Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 15(6): 589-597, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31086330

RESUMEN

To maximize a desired product, metabolic engineers typically express enzymes to high, constant levels. Yet, permanent pathway activation can have undesirable consequences including competition with essential pathways and accumulation of toxic intermediates. Faced with similar challenges, natural metabolic systems compartmentalize enzymes into organelles or post-translationally induce activity under certain conditions. Here we report that optogenetic control can be used to extend compartmentalization and dynamic control to engineered metabolisms in yeast. We describe a suite of optogenetic tools to trigger assembly and disassembly of metabolically active enzyme clusters. Using the deoxyviolacein biosynthesis pathway as a model system, we find that light-switchable clustering can enhance product formation six-fold and product specificity 18-fold by decreasing the concentration of intermediate metabolites and reducing flux through competing pathways. Inducible compartmentalization of enzymes into synthetic organelles can thus be used to control engineered metabolic pathways, limit intermediates and favor the formation of desired products.


Asunto(s)
Luz , Ingeniería Metabólica , Redes y Vías Metabólicas/efectos de la radiación , Optogenética/métodos , Orgánulos/metabolismo , Orgánulos/efectos de la radiación , Biología Sintética , Indoles/metabolismo , Orgánulos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efectos de la radiación , Synechocystis/efectos de la radiación
2.
Dev Cell ; 40(2): 185-192, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28118601

RESUMEN

Animal development is characterized by signaling events that occur at precise locations and times within the embryo, but determining when and where such precision is needed for proper embryogenesis has been a long-standing challenge. Here we address this question for extracellular signal regulated kinase (Erk) signaling, a key developmental patterning cue. We describe an optogenetic system for activating Erk with high spatiotemporal precision in vivo. Implementing this system in Drosophila, we find that embryogenesis is remarkably robust to ectopic Erk signaling, except from 1 to 4 hr post-fertilization, when perturbing the spatial extent of Erk pathway activation leads to dramatic disruptions of patterning and morphogenesis. Later in development, the effects of ectopic signaling are buffered, at least in part, by combinatorial mechanisms. Our approach can be used to systematically probe the differential contributions of the Ras/Erk pathway and concurrent signals, leading to a more quantitative understanding of developmental signaling.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/enzimología , Desarrollo Embrionario , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Desarrollo Embrionario/efectos de la radiación , Activación Enzimática/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Luz , Optogenética , Factores de Tiempo , Transcripción Genética/efectos de la radiación , Proteínas ras/metabolismo
3.
Blood ; 122(12): 2114-24, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23950177

RESUMEN

We have identified a ubiquitin-binding domain within the NH2-terminal sequences of p210 BCR/ABL and determined that the binding site co-localizes with the binding site for ß-catenin. The domain does not support the auto- or trans-kinase activity of p210 BCR/ABL or its ability to interact with GRB2 and activate ERK1/2 signaling. Expression of p210 BCR/ABL, but not a ß-catenin-binding mutant, in hematopoietic cells is associated with the accumulation of p-ß-catenin (Tyr654) and increased TCF/LEF-mediated transcription. In a bone marrow transplantation model, the interaction between ß-catenin and p-ß-catenin (Tyr654) is detectable in mice transplanted with p210 BCR/ABL, but not the mutant. Whereas mice transplanted with p210 BCR/ABL exhibit myeloid disease with expansion of monocytes and neutrophils, mice transplanted with the mutant predominantly exhibit expansion of neutrophils, polycythemia, and increased lifespan. The increased disease latency is associated with expansion of megakaryocyte-erythrocyte progenitors, a decrease in common myeloid progenitors, and reduced ß-catenin signaling in the bone marrow of the diseased mice. These observations support a model in which p210 BCR/ABL may influence lineage-specific leukemic expansion by directly binding and phosphorylating ß-catenin and altering its transcriptional activity. They further suggest that the interaction may play a role in chronic phase disease progression.


Asunto(s)
Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ubiquitina/metabolismo , beta Catenina/metabolismo , Animales , Sitios de Unión , Trasplante de Médula Ósea , Línea Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Proteínas de Fusión bcr-abl/química , Inmunofenotipificación , Leucemia Mielógena Crónica BCR-ABL Positiva/mortalidad , Leucemia Mielógena Crónica BCR-ABL Positiva/terapia , Ratones , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Factores de Transcripción TCF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA