RESUMEN
The aim of this study was to assess the effect of different commercial liquid phases (Ketac, Riva, and Fuji IX) and the use of spherical pre-reacted glass (SPG) fillers on cement maturation, fluoride release, compressive (CS) and biaxial flexural strength (BFS) of experimental glass ionomer cements (GICs). The experimental GICs (Ketac_M, Riva_M, FujiIX_M) were prepared by mixing SPG fillers with commercial liquid phases using the powder to liquid mass ratio of 2.5:1. FTIR-ATR was used to assess the maturation of GICs. Diffusion coefficient of fluoride (DF) and cumulative fluoride release (CF) in deionized water was determined using the fluoride ion specific electrode (n=3). CS and BFS at 24 h were also tested (n=6). Commercial GICs were used as comparisons. Riva and Riva_M exhibited rapid polyacrylate salt formation. The highest DF and CF were observed with Riva_M (1.65x10-9 cm2/s) and Riva (77 ppm) respectively. Using SPG fillers enhanced DF of GICs on average from ~2.5x10-9 cm2/s to ~3.0x10-9 cm2/s but reduced CF of the materials on average from ~51 ppm to ~42 ppm. The CS and BFS of Ketac_M (144 and 22 MPa) and Fuji IX_M (123 and 30 MPa) were comparable to commercial materials. Using SPG with Riva significantly reduced CS and BFS from 123 MPa to 55 MPa and 42 MPa to 28 MPa respectively. The use of SPG fillers enhanced DF but reduced CF of GICs. Using SPG with Ketac or Fuji IX liquids provided comparable strength to the commercial materials.
Asunto(s)
Cementos Dentales , Cementos de Ionómero Vítreo , Fuerza Compresiva , Ensayo de Materiales , Resistencia a la TracciónRESUMEN
Abstract The aim of this study was to assess the effect of different commercial liquid phases (Ketac, Riva, and Fuji IX) and the use of spherical pre-reacted glass (SPG) fillers on cement maturation, fluoride release, compressive (CS) and biaxial flexural strength (BFS) of experimental glass ionomer cements (GICs). The experimental GICs (Ketac_M, Riva_M, FujiIX_M) were prepared by mixing SPG fillers with commercial liquid phases using the powder to liquid mass ratio of 2.5:1. FTIR-ATR was used to assess the maturation of GICs. Diffusion coefficient of fluoride (DF) and cumulative fluoride release (CF) in deionized water was determined using the fluoride ion specific electrode (n=3). CS and BFS at 24 h were also tested (n=6). Commercial GICs were used as comparisons. Riva and Riva_M exhibited rapid polyacrylate salt formation. The highest DF and CF were observed with Riva_M (1.65x10-9 cm2/s) and Riva (77 ppm) respectively. Using SPG fillers enhanced DF of GICs on average from ~2.5x10-9 cm2/s to ~3.0x10-9 cm2/s but reduced CF of the materials on average from ~51 ppm to ~42 ppm. The CS and BFS of Ketac_M (144 and 22 MPa) and Fuji IX_M (123 and 30 MPa) were comparable to commercial materials. Using SPG with Riva significantly reduced CS and BFS from 123 MPa to 55 MPa and 42 MPa to 28 MPa respectively. The use of SPG fillers enhanced DF but reduced CF of GICs. Using SPG with Ketac or Fuji IX liquids provided comparable strength to the commercial materials.
Resumo O objetivo deste estudo foi avaliar o efeito de diferentes fases líquidas comerciais (Ketac, Riva e Fuji IX) e o uso de partículas esféricas de vidro pré-reagido (SPG) na maturação do cimento, liberação de flúor, força de compressão (CS) e resistência biaxial à flexão (BFS) de cimentos de ionômero de vidro (GICs) experimentais. Os GICs experimentais (Ketac_M, Riva_M, FujiIX_M) foram preparados pela mistura de partículas SPG com fases líquidas comerciais usando a proporção de pó para massa líquida de 2,5: 1. O FTIR-ATR foi usado para avaliar a maturação dos GICs. O coeficiente de difusão do flúor (DF) e a liberação cumulativa de flúor (CF) em água deionizada foram determinados usando o eletrodo específico do íon fluoreto (n = 3). CS e BFS em 24 h também foram testados (n = 6). GICs comerciais foram usados como comparações. Riva e Riva_M exibiram rápida formação de sal de poliacrilato. Os maiores DF e CF foram observados com Riva_M (1,65x10-9 cm2/s) e Riva (77 ppm), respectivamente. O uso de partículas SPG melhorou o DF de GICs em média de ~ 2,5x10-9 cm2/s a ~ 3,0x10-9 cm2/s, mas reduziu o CF dos materiais em média de ~ 51 ppm a ~ 42 ppm. O CS e BFS de Ketac_M (144 e 22 MPa) e Fuji IX_M (123 e 30 MPa) foram comparáveis aos materiais comerciais. Usar SPG com Riva reduziu significativamente CS e BFS de 123 MPa para 55 MPa e 42 MPa para 28 MPa, respectivamente. O uso de SPG partículas melhorou o DF, mas reduziu o CF dos GICs. O uso de partículas SPG com líquidos Ketac ou Fuji IX proporcionou resistência comparável aos materiais comerciais.