Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2913-2926, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29883716

RESUMEN

BACKGROUND: Mitochondrial biogenesis is crucial for myogenic differentiation and regeneration of skeletal muscle tissue and is tightly controlled by the peroxisome proliferator-activated receptor-γ co-activator 1 (PGC-1) signaling network. In the present study, we hypothesized that inactivation of glycogen synthase kinase (GSK)-3ß, previously suggested to interfere with PGC-1 in non-muscle cells, potentiates PGC-1 signaling and the development of mitochondrial biogenesis during myogenesis, ultimately resulting in an enhanced myotube oxidative capacity. METHODS: GSK-3ß was inactivated genetically or pharmacologically during myogenic differentiation of C2C12 muscle cells. In addition, m. gastrocnemius tissue was collected from wild-type and muscle-specific GSK-3ß knock-out (KO) mice at different time-points during the reloading/regeneration phase following a 14-day hind-limb suspension period. Subsequently, expression levels of constituents of the PGC-1 signaling network as well as key parameters of mitochondrial oxidative metabolism were investigated. RESULTS: In vitro, both knock-down as well as pharmacological inhibition of GSK-3ß not only increased expression levels of important constituents of the PGC-1 signaling network, but also potentiated myogenic differentiation-associated increases in mitochondrial respiration, mitochondrial DNA copy number, oxidative phosphorylation (OXPHOS) protein abundance and the activity of key enzymes involved in the Krebs cycle and fatty acid ß-oxidation. In addition, GSK-3ß KO animals showed augmented reloading-induced increases in skeletal muscle gene expression of constituents of the PGC-1 signaling network as well as sub-units of OXPHOS complexes compared to wild-type animals. CONCLUSION: Inactivation of GSK-3ß stimulates activation of PGC-1 signaling and mitochondrial biogenesis during myogenic differentiation and reloading of the skeletal musculature.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/fisiología , Biogénesis de Organelos , Animales , Diferenciación Celular/fisiología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/genética , Suspensión Trasera/efectos adversos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/citología , Atrofia Muscular/etiología , Atrofia Muscular/patología , Mioblastos/citología , Mioblastos/fisiología , Fosforilación Oxidativa/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo
2.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3075-3086, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28943449

RESUMEN

BACKGROUND: Aberrant skeletal muscle mitochondrial oxidative metabolism is a debilitating feature of chronic diseases such as chronic obstructive pulmonary disease, type 2 diabetes and chronic heart failure. Evidence in non-muscle cells suggests that glycogen synthase kinase-3ß (GSK-3ß) represses mitochondrial biogenesis and inhibits PPAR-γ co-activator 1 (PGC-1), a master regulator of cellular oxidative metabolism. The role of GSK-3ß in the regulation of skeletal muscle oxidative metabolism is unknown. AIMS: We hypothesized that inactivation of GSK-3ß stimulates muscle oxidative metabolism by activating PGC-1 signaling and explored if GSK-3ß inactivation could protect against physical inactivity-induced alterations in skeletal muscle oxidative metabolism. METHODS: GSK-3ß was modulated genetically and pharmacologically in C2C12 myotubes in vitro and in skeletal muscle in vivo. Wild-type and muscle-specific GSK-3ß knock-out (KO) mice were subjected to hind limb suspension for 14days. Key constituents of oxidative metabolism and PGC-1 signaling were investigated. RESULTS: In vitro, knock-down of GSK-3ß increased mitochondrial DNA copy number, protein and mRNA abundance of oxidative phosphorylation (OXPHOS) complexes and activity of oxidative metabolic enzymes but also enhanced protein and mRNA abundance of key PGC-1 signaling constituents. Similarly, pharmacological inhibition of GSK-3ß increased transcript and protein abundance of key constituents and regulators of mitochondrial energy metabolism. Furthermore, GSK-3ß KO animals were protected against unloading-induced decrements in expression levels of these constituents. CONCLUSION: Inactivation of GSK-3ß up-regulates skeletal muscle mitochondrial metabolism and increases expression levels of PGC-1 signaling constituents. In vivo, GSK-3ß KO protects against inactivity-induced reductions in muscle metabolic gene expression.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Músculo Esquelético/metabolismo , Animales , Línea Celular , Respiración de la Célula/fisiología , Activación Enzimática , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/enzimología , Fosforilación Oxidativa , Transducción de Señal , Factores de Transcripción/metabolismo , Regulación hacia Arriba
3.
Am J Physiol Endocrinol Metab ; 306(6): E615-26, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24425759

RESUMEN

Physical inactivity-induced loss of skeletal muscle oxidative phenotype (OXPHEN), often observed in chronic disease, adversely affects physical functioning and quality of life. Potential therapeutic targets remain to be identified, since the molecular mechanisms involved in reloading-induced recovery of muscle OXPHEN remain incompletely understood. We hypothesized a role for alternative NF-κB, as a recently identified positive regulator of muscle OXPHEN, in reloading-induced alterations in muscle OXPHEN. Markers and regulators (including alternative NF-κB signaling) of muscle OXPHEN were investigated in gastrocnemius muscle of mice subjected to a hindlimb suspension/reloading (HLS/RL) protocol. Expression levels of oxidative phosphorylation subunits and slow myosin heavy chain isoforms I and IIA increased rapidly upon RL. After an initial decrease upon HLS, mRNA levels of peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC) molecules PGC-1α and PGC-1ß and mRNA levels of mitochondrial transcription factor A (Tfam) and estrogen-related receptor α increased upon RL. PPAR-δ, nuclear respiratory factor 1 (NRF-1), NRF-2α, and sirtuin 1 mRNA levels increased during RL although expression levels were unaltered upon HLS. In addition, both Tfam and NRF-1 protein levels increased significantly during the RL period. Moreover, upon RL, IKK-α mRNA and protein levels increased, and phosphorylation of P100 and subsequent processing to P52 were elevated, reflecting alternative NF-κB activation. We conclude that RL-induced recovery of muscle OXPHEN is associated with activation of alternative NF-κB signaling.


Asunto(s)
Modelos Animales de Enfermedad , Inmovilización/efectos adversos , Músculo Esquelético/metabolismo , Trastornos Musculares Atróficos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Factores de Transcripción/biosíntesis , Animales , Biomarcadores/metabolismo , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad/biosíntesis , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Suspensión Trasera , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Trastornos Musculares Atróficos/etiología , Trastornos Musculares Atróficos/rehabilitación , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , FN-kappa B/agonistas , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Distribución Aleatoria , Receptores de Estrógenos/biosíntesis , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Soporte de Peso , Receptor Relacionado con Estrógeno ERRalfa
4.
Biochim Biophys Acta ; 1842(2): 175-85, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24215713

RESUMEN

BACKGROUND: Loss of quadriceps muscle oxidative phenotype (OXPHEN) is an evident and debilitating feature of chronic obstructive pulmonary disease (COPD). We recently demonstrated involvement of the inflammatory classical NF-κB pathway in inflammation-induced impairments in muscle OXPHEN. The exact underlying mechanisms however are unclear. Interestingly, IκB kinase α (IKK-α: a key kinase in the alternative NF-κB pathway) was recently identified as a novel positive regulator of skeletal muscle OXPHEN. We hypothesised that inflammation-induced classical NF-κB activation contributes to loss of muscle OXPHEN in COPD by reducing IKK-α expression. METHODS: Classical NF-κB signalling was activated (molecularly or by tumour necrosis factor α: TNF-α) in cultured myotubes and the impact on muscle OXPHEN and IKK-α levels was investigated. Moreover, the alternative NF-κB pathway was modulated to investigate the impact on muscle OXPHEN in absence or presence of an inflammatory stimulus. As a proof of concept, quadriceps muscle biopsies of COPD patients and healthy controls were analysed for expression levels of IKK-α, OXPHEN markers and TNF-α. RESULTS: IKK-α knock-down in cultured myotubes decreased expression of OXPHEN markers and key OXPHEN regulators. Moreover, classical NF-κB activation (both by TNF-α and IKK-ß over-expression) reduced IKK-α levels and IKK-α over-expression prevented TNF-α-induced impairments in muscle OXPHEN. Importantly, muscle IKK-α protein abundance and OXPHEN was reduced in COPD patients compared to controls, which was more pronounced in patients with increased muscle TNF-α mRNA levels. CONCLUSION: Classical NF-κB activation impairs skeletal muscle OXPHEN by reducing IKK-α expression. TNF-α-induced reductions in muscle IKK-α may accelerate muscle OXPHEN deterioration in COPD.


Asunto(s)
Quinasa I-kappa B/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , FN-kappa B/metabolismo , Anciano , Animales , Western Blotting , Línea Celular , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Quinasa I-kappa B/genética , Masculino , Ratones , Persona de Mediana Edad , Fibras Musculares Esqueléticas/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , FN-kappa B/genética , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/fisiopatología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
5.
J Appl Physiol (1985) ; 114(9): 1329-39, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22936724

RESUMEN

Muscle wasting is associated with poor prognosis in chronic obstructive pulmonary disease (COPD). Exercise stimulates muscle recovery, but its efficacy is variable, depending on the clinical condition and medical treatment. Systemic glucocorticoids, commonly administered in high doses during acute disease exacerbations or as maintenance treatment in end-stage disease, are known to contribute to muscle wasting. As muscle mass recovery involves insulin-like growth factor (IGF)-I signaling, which can be stimulated by anabolic steroids, the impact of glucocorticoids and the effect of simultaneous IGF-I stimulation by anabolic steroids on muscle recovery and growth were investigated. The effects of, and interactions between, glucocorticoid and IGF-I signaling on skeletal muscle growth were assessed in differentiating C2C12 myocytes. As proof of principle, we performed a post hoc analysis stratifying patients by glucocorticoid use of a clinical trial investigating the efficacy of anabolic steroid supplementation on muscle recovery in muscle-wasted patients with COPD. Glucocorticoids strongly impaired protein synthesis signaling, myotube formation, and muscle-specific protein expression. In contrast, in the presence of glucocorticoids, IGF-I synergistically stimulated myotube fusion and myofibrillar protein expression, which corresponded with restored protein synthesis signaling by IGF-I and increased transcriptional activation of muscle-specific genes by glucocorticoids. In COPD patients on maintenance glucocorticoid treatment, the clinical trial also revealed an enhanced effect of anabolic steroids on muscle mass and respiratory muscle strength. In conclusion, synergistic effects of anabolic steroids and glucocorticoids on muscle recovery may be caused by relief of the glucocorticoid-imposed blockade on protein synthesis signaling, allowing effective translation of glucocorticoid-induced accumulation of muscle-specific gene transcripts.


Asunto(s)
Glucocorticoides/farmacología , Factor I del Crecimiento Similar a la Insulina/fisiología , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/fisiología , Anciano , Anabolizantes/farmacología , Animales , Línea Celular , Dexametasona/administración & dosificación , Sinergismo Farmacológico , Regulación de la Expresión Génica/efectos de los fármacos , Glucocorticoides/administración & dosificación , Humanos , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Masculino , Ratones , Persona de Mediana Edad , Modelos Biológicos , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Nandrolona/análogos & derivados , Nandrolona/farmacología , Nandrolona Decanoato , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
6.
Cell Mol Life Sci ; 68(3): 523-35, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20694829

RESUMEN

Myogenic differentiation involves myoblast fusion and induction of muscle-specific gene expression, which are both stimulated by pharmacological (LiCl), genetic, or IGF-I-mediated GSK-3ß inactivation. To assess whether stimulation of myogenic differentiation is common to ligand-mediated GSK-3ß inactivation, myoblast fusion and muscle-specific gene expression were investigated in response to Wnt-3a. Moreover, crosstalk between IGF-I/GSK-3ß/NFATc3 and Wnt/GSK-3ß/ß-catenin signaling was assessed. While both Wnt-3a and LiCl promoted myoblast fusion, muscle-specific gene expression was increased by LiCl, but not by Wnt-3a or ß-catenin over-expression. Furthermore, LiCl and IGF-I, but not Wnt-3a, increased NFATc3 transcriptional activity. In contrast, ß-catenin-dependent transcriptional activity was increased by Wnt-3a and LiCl, but not IGF-I. These results for the first time reveal a segregated regulation of myoblast fusion and muscle-specific gene expression following stimulation of myogenic differentiation in response to distinct ligand-specific signaling routes of GSK-3ß inactivation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Cloruro de Litio/farmacología , Mioblastos/citología , Proteínas Wnt/metabolismo , Animales , Fusión Celular , Línea Celular , Activación Enzimática/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Músculos/efectos de los fármacos , Músculos/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Estabilidad Proteica/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...