Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 660012, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777403

RESUMEN

The in trust sweetpotato collection housed by the International Center of Potato (CIP) is one of the largest assemblages of plant material representing the genetic resources of this important staple crop. The collection currently contains almost 6,000 accessions of Ipomoea batatas (cultivated sweetpotato) and over 1,000 accessions of sweetpotato crop wild relatives (CWRs). In this study, the entire cultivated collection (5,979 accessions) was genotyped with a panel of 20 simple sequence repeat (SSR) markers to assess genetic identity, diversity, and population structure. Genotyping and phenotyping of in vitro plantlets and mother plants were conducted simultaneously on 2,711 accessions (45% of the total collection) to identify and correct possible genetic identity errors which could have occurred at any time over the thirty plus years of maintenance in the in vitro collection. Within this group, 533 accessions (19.6%) had errors in identity. Field evaluations of morphological descriptors were carried out to confirm the marker data. A phylogenetic tree was constructed to reveal the intraspecific relationships in the population which uncovered high levels of redundancy in material from Peru and Latin America. These genotypic data were supported by morphological data. Population structure analysis demonstrated support for four ancestral populations with many of the accessions having lower levels of gene flow from the other populations. This was especially true of germplasm derived from Peru, Ecuador, and Africa. The set of 20 SSR markers was subsequently utilized to examine a subset of 189 accessions from the USDA sweetpotato germplasm collection and to identify and reconcile potential errors in the identification of clones shared between these collections. Marker analysis demonstrated that the USDA subset of material had 65 unique accessions that were not found in the larger CIP collection. As far as the authors are aware, this is the first report of genotyping an entire sweetpotato germplasm collection in its entirety.

2.
Front Plant Sci ; 11: 903, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719697

RESUMEN

Bacterial microorganisms which are latent in in vitro cultures can limit the efficiency of in vitro methods for the conservation of genetic resources. In this study we screened 2,373 accessions from the in vitro sweetpotato germplasm collection of the International Potato Center in Lima, Peru for bacteria associated with plantlets in tissue culture through a combination of morphological methods and partial 16S rDNA sequencing. Bacteria were detected in 240 accessions (10% of the accessions screened) and we were able to isolate 184 different bacterial isolates from 177 different accessions. These corresponded to at least nineteen Operational Taxonomic Units (OTUs) of bacteria, belonging to the genera Sphingomonas, Bacillus, Paenibacillus, Methylobacterium, Brevibacterium, Acinetobacter, Microbacterium, Streptomyces, Staphylococcus, and Janibacter. Specific primers were developed for PCR based diagnostic tests that were able to rapidly detect these bacteria directly from tissue culture plants, without the need of microbial sub-culturing. Based on PCR screening the largest bacterial OTUs corresponded to a Paenibacillus sp. closely related to Paenibacillus taichungensis (41.67%), and Bacillus sp. closely related to Bacillus cereus (22.22%), and Bacillus pumilus (16.67%). Since in vitro plant genetic resources must be microbe-free for international distribution and use, any microbial presence is considered a contamination and therefore it is critical to clean all cultures of these latent-appearing bacteria. To accomplish this, plantlets from in vitro were transferred to soil, watered with Dimanin® (2 ml/l) weekly and then reintroduced into in vitro. Of the 191 accessions processed for bacterial elimination, 100% tested bacteria-free after treatment. It is suspected that these bacteria may be endosymbionts and some may be beneficial for the plants.

3.
Genome ; 61(7): 523-537, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29792822

RESUMEN

Breeders rely on genetic integrity of material from genebanks; however, admixture, mislabeling, and errors in original data can occur and be detrimental. Two hundred and fifty accessions, representing paired samples consisting of original mother plants and their in vitro counterparts from the cultivated potato collection at the International Potato Center (CIP) were fingerprinted using the Infinium 12K V2 Potato Array to confirm genetic identity of the accessions and evaluate genetic diversity of the potato collection. Diploid, triploid, and tetraploid accessions were included, representing seven cultivated potato taxa (based on Hawkes, 1990). Fingerprints between voucher mother plants maintained in the field and in vitro clones of the same accession were used to evaluate identity, relatedness, and ancestry using hierarchal clustering and model-based Bayesian admixture analyses. Generally, in vitro and field clones of the same accession grouped together; however, 11 (4.4%) accessions were mismatches genetically, and in some cases the SNP data revealed the identity of the mixed accession. SNP genotypes were used to assess genetic diversity and to evaluate inter- and intraspecific relationships along with determining population structure and hybrid origins. Phylogenetic analyses suggest that the triploids included in this study are genetically similar. Further, some genetic redundancies among individual accessions were also identified along with some putative misclassified accessions. Accessions generally clustered together based on taxonomic classification and ploidy level with some deviations. STRUCTURE analysis identified six populations with significant gene flow among the populations, as well as revealed hybrid taxa and accessions. Overall, the Infinium 12K V2 Potato Array proved useful in confirming identity and highlighting the diversity in this subset of the CIP collection, providing new insights into the accessions evaluated. This study provides a model for genetic identity of plant genetic resources collections as mistakes in conservation of these collections and in genebanks is a reality. For breeders and other users of these collections, confirmed identity is critical, as well as for quality management programs and to provide insights into the accessions evaluated.


Asunto(s)
Dermatoglifia del ADN/métodos , Variación Genética , Solanum tuberosum/genética , Teorema de Bayes , Bancos de Muestras Biológicas , Diploidia , Genotipo , Filogenia , Polimorfismo de Nucleótido Simple , Solanum tuberosum/clasificación , Especificidad de la Especie , Tetraploidía , Triploidía
4.
Funct Plant Biol ; 35(8): 669-688, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32688822

RESUMEN

Responses to prolonged drought and recovery from drought of two South American potato (Solanum tuberosum L. ssp. andigena (Juz & Buk) Hawkes) landraces, Sullu and Ccompis were compared under field conditions. Physiological and biomass measurements, yield analysis, the results of hybridisation to a potato microarray platform (44 000 probes) and metabolite profiling were used to characterise responses to water deficit. Drought affected shoot and root biomass negatively in Ccompis but not in Sullu, whereas both genotypes maintained tuber yield under water stress. Ccompis showed stronger reduction in maximum quantum yield under stress than Sullu, and less decrease in stomatal resistance. Genes associated with PSII functions were activated during recovery in Sullu only. Evidence for sucrose accumulation in Sullu only during maximum stress and recovery was observed, in addition to increases in cell wall biosynthesis. A depression in the abundance of plastid superoxide dismutase transcripts was observed under maximum stress in Ccompis. Both sucrose and the regulatory molecule trehalose accumulated in the leaves of Sullu only. In contrast, in Ccompis, the raffinose oligosaccharide family pathway was activated, whereas low levels of sucrose and minor stress-mediated changes in trehalose were observed. Proline, and expression of the associated genes, rose in both genotypes under drought, with a 3-fold higher increase in Sullu than in Ccompis. The results demonstrate the presence of distinct molecular and biochemical drought responses in the two potato landraces leading to yield maintenance but differential biomass accumulation in vegetative tissues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...