Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Brain Mapp ; 43(7): 2289-2310, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35243723

RESUMEN

Privacy concerns for rare disease data, institutional or IRB policies, access to local computational or storage resources or download capabilities are among the reasons that may preclude analyses that pool data to a single site. A growing number of multisite projects and consortia were formed to function in the federated environment to conduct productive research under constraints of this kind. In this scenario, a quality control tool that visualizes decentralized data in its entirety via global aggregation of local computations is especially important, as it would allow the screening of samples that cannot be jointly evaluated otherwise. To solve this issue, we present two algorithms: decentralized data stochastic neighbor embedding, dSNE, and its differentially private counterpart, DP-dSNE. We leverage publicly available datasets to simultaneously map data samples located at different sites according to their similarities. Even though the data never leaves the individual sites, dSNE does not provide any formal privacy guarantees. To overcome that, we rely on differential privacy: a formal mathematical guarantee that protects individuals from being identified as contributors to a dataset. We implement DP-dSNE with AdaCliP, a method recently proposed to add less noise to the gradients per iteration. We introduce metrics for measuring the embedding quality and validate our algorithms on these metrics against their centralized counterpart on two toy datasets. Our validation on six multisite neuroimaging datasets shows promising results for the quality control tasks of visualization and outlier detection, highlighting the potential of our private, decentralized visualization approach.


Asunto(s)
Algoritmos , Privacidad , Humanos , Neuroimagen , Control de Calidad , Proyectos de Investigación
2.
Front Neuroinform ; 12: 55, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210327

RESUMEN

In the field of neuroimaging, there is a growing interest in developing collaborative frameworks that enable researchers to address challenging questions about the human brain by leveraging data across multiple sites all over the world. Additionally, efforts are also being directed at developing algorithms that enable collaborative analysis and feature learning from multiple sites without requiring the often large data to be centrally located. In this paper, we propose two new decentralized algorithms: (1) A decentralized regression algorithm for performing a voxel-based morphometry analysis on structural magnetic resonance imaging (MRI) data and, (2) A decentralized dynamic functional network connectivity algorithm which includes decentralized group ICA and sliding-window analysis of functional MRI data. We compare results against those obtained from their pooled (or centralized) counterparts on the same data i.e., as if they are at one site. Results produced by the decentralized algorithms are similar to the pooled-case and showcase the potential of performing multi-voxel and multivariate analyses of data located at multiple sites. Such approaches enable many more collaborative and comparative analysis in the context of large-scale neuroimaging studies.

3.
Front Neurosci ; 10: 365, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27594820

RESUMEN

The field of neuroimaging has embraced the need for sharing and collaboration. Data sharing mandates from public funding agencies and major journal publishers have spurred the development of data repositories and neuroinformatics consortia. However, efficient and effective data sharing still faces several hurdles. For example, open data sharing is on the rise but is not suitable for sensitive data that are not easily shared, such as genetics. Current approaches can be cumbersome (such as negotiating multiple data sharing agreements). There are also significant data transfer, organization and computational challenges. Centralized repositories only partially address the issues. We propose a dynamic, decentralized platform for large scale analyses called the Collaborative Informatics and Neuroimaging Suite Toolkit for Anonymous Computation (COINSTAC). The COINSTAC solution can include data missing from central repositories, allows pooling of both open and "closed" repositories by developing privacy-preserving versions of widely-used algorithms, and incorporates the tools within an easy-to-use platform enabling distributed computation. We present an initial prototype system which we demonstrate on two multi-site data sets, without aggregating the data. In addition, by iterating across sites, the COINSTAC model enables meta-analytic solutions to converge to "pooled-data" solutions (i.e., as if the entire data were in hand). More advanced approaches such as feature generation, matrix factorization models, and preprocessing can be incorporated into such a model. In sum, COINSTAC enables access to the many currently unavailable data sets, a user friendly privacy enabled interface for decentralized analysis, and a powerful solution that complements existing data sharing solutions.

4.
Front Neuroinform ; 10: 9, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014049

RESUMEN

In this paper we propose a web-based approach for quick visualization of big data from brain magnetic resonance imaging (MRI) scans using a combination of an automated image capture and processing system, nonlinear embedding, and interactive data visualization tools. We draw upon thousands of MRI scans captured via the COllaborative Imaging and Neuroinformatics Suite (COINS). We then interface the output of several analysis pipelines based on structural and functional data to a t-distributed stochastic neighbor embedding (t-SNE) algorithm which reduces the number of dimensions for each scan in the input data set to two dimensions while preserving the local structure of data sets. Finally, we interactively display the output of this approach via a web-page, based on data driven documents (D3) JavaScript library. Two distinct approaches were used to visualize the data. In the first approach, we computed multiple quality control (QC) values from pre-processed data, which were used as inputs to the t-SNE algorithm. This approach helps in assessing the quality of each data set relative to others. In the second case, computed variables of interest (e.g., brain volume or voxel values from segmented gray matter images) were used as inputs to the t-SNE algorithm. This approach helps in identifying interesting patterns in the data sets. We demonstrate these approaches using multiple examples from over 10,000 data sets including (1) quality control measures calculated from phantom data over time, (2) quality control data from human functional MRI data across various studies, scanners, sites, (3) volumetric and density measures from human structural MRI data across various studies, scanners and sites. Results from (1) and (2) show the potential of our approach to combine t-SNE data reduction with interactive color coding of variables of interest to quickly identify visually unique clusters of data (i.e., data sets with poor QC, clustering of data by site) quickly. Results from (3) demonstrate interesting patterns of gray matter and volume, and evaluate how they map onto variables including scanners, age, and gender. In sum, the proposed approach allows researchers to rapidly identify and extract meaningful information from big data sets. Such tools are becoming increasingly important as datasets grow larger.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...