Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569295

RESUMEN

Currently, the development of genome editing (GE) tools has provided a wide platform for targeted modification of plant genomes. However, the lack of versatile DNA delivery systems for a large variety of crop species has been the main bottleneck for improving crops with beneficial traits. Currently, the generation of plants with heritable mutations induced by GE tools mostly goes through tissue culture. Unfortunately, current tissue culture systems restrict successful results to only a limited number of plant species and genotypes. In order to release the full potential of the GE tools, procedures need to be species and genotype independent. This review provides an in-depth summary and insights into the various in vitro tissue culture systems used for GE in the economically important crops barley, wheat, rice, sorghum, soybean, maize, potatoes, cassava, and millet and uncovers new opportunities and challenges of already-established tissue culture platforms for GE in the crops.


Asunto(s)
Productos Agrícolas , Edición Génica , Edición Génica/métodos , Productos Agrícolas/genética , Grano Comestible/genética , Genotipo , Fenotipo , Genoma de Planta , Sistemas CRISPR-Cas , Fitomejoramiento/métodos , Plantas Modificadas Genéticamente/genética
2.
Front Plant Sci ; 12: 755788, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868146

RESUMEN

The use of plants as heterologous hosts to produce recombinant proteins has some intriguing advantages. There is, however, the potential of overloading the endoplasmic reticulum (ER) capacity when producing recombinant proteins in the seeds. This leads to an ER-stress condition and accumulating of unfolded proteins. The unfolded protein response (UPR) is activated to alleviate the ER-stress. With the aim to increase the yield of human epidermal growth factor (EGF) and mouse leukemia inhibitory factor (mLIF) in barley, we selected genes reported to have increased expression during ER-induced stress. The selected genes were calreticulin (CRT), protein disulfide isomerase (PDI), isopentenyl diphosphate isomerase (IPI), glutathione-s-transferase (GST), HSP70, HSP26, and HSP16.9. These were knocked out using CRISPR/Cas9 or overexpressed by conventional transgenesis. The generated homozygous barley lines were crossed with barley plants expressing EGF or mLIF and the offspring plants analyzed for EGF and mLIF protein accumulation in the mature grain. All manipulated genes had an impact on the expression of UPR genes when plantlets were subjected to tunicamycin (TN). The PDI knockout plant showed decreased protein body formation, with protein evenly distributed in the cells of the endosperm. The two genes, GST and IPI, were found to have a positive effect on recombinant protein production. mLIF expression was increased in a F2 homozygous GST knockout mutant background as compared to a F2 GST wild-type offspring. The overexpression of IPI in a F1 cross showed a significant increase in EGF expression. We demonstrate that manipulation of UPR related genes can have a positive effect on recombinant protein accumulation.

3.
Mol Biotechnol ; 63(1): 13-23, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33051823

RESUMEN

Seeds have evolutionarily developed to store protein without immediately degrading it and constitute ideal tissues for recombinant protein storage. Unfortunately, the production of recombinant protein in seeds is compromised by low yield as compared to other heterologous expression systems. In order to improve the yield of the human epidermal growth factor (EGF) in barley, protein sink-source relations in the developing grain were modulated towards EGF instead of the barley storage protein. The EGF gene, under the control of a B-hordein and a seed-specific oat globulin promoter, was introduced by crossing EGF lines into the Risø 56 mutant deficient in B-hordein storage protein synthesis. Offspring plants were analysed for EGF and Hordein expression and for expression of the unfolded protein response (UPR) genes PDI and CRT to monitor changes in ER stress levels. EGF content was increased significantly in the mature grain of homozygous offspring and PDI and CRT gene expressions were upregulated. We demonstrate, for the first time in barley, that replacement of an abundant seed storage protein with a specific heterologous protein driven by the promoter of the removed gene can accelerate the production of a specific heterologous protein in barley grains.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Glútenes/metabolismo , Proteínas de Granos/metabolismo , Hordeum/metabolismo , Agricultura Molecular/métodos , Proteínas de Plantas/metabolismo , Respuesta de Proteína Desplegada/genética , Factor de Crecimiento Epidérmico/análisis , Factor de Crecimiento Epidérmico/genética , Expresión Génica , Glútenes/análisis , Glútenes/genética , Proteínas de Granos/análisis , Homocigoto , Hordeum/genética , Humanos , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Proteínas Recombinantes , Semillas/genética , Semillas/metabolismo
4.
Elife ; 72018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30284535

RESUMEN

Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.


Asunto(s)
Quitinasas/genética , Bacterias Fijadoras de Nitrógeno/genética , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis/genética , Quitinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Lipopolisacáridos/genética , Lotus/química , Lotus/genética , Nitrógeno/metabolismo , Bacterias Fijadoras de Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Nódulos de las Raíces de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA