Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38543151

RESUMEN

Human glutathione transferase A4-4 (hGSTA4-4) displays high catalytic efficiency towards 4-hydroxyalkenals and other cytotoxic and mutagenic products of radical reactions and lipid peroxidation. Its role as a target for the chemosensitization of cancer cells has not been investigated so far. In this study, the inhibitory potency of twelve selected natural products and ten monocarbonyl curcumin derivatives against hGSTA4-4 was studied. Among natural products, ellagic acid turned out to be the strongest inhibitor with an IC50 value of 0.44 ± 0.01 µM. Kinetic analysis using glutathione (GSH) and 1-chloro-2,4-dinitrobenzene (CDNB) as variable substrates showed that ellagic acid behaved as a competitive inhibitor towards both GSH and CDNB, with Ki values of 0.39 ± 0.02 and 0.63 ± 0.03 µM, respectively. Among the curcumin derivatives studied, three proved to be the most potent inhibitors, in the order DM151 > DM101 > DM100, with IC50 values of 2.4 ± 0.1 µM, 12.7 ± 1.1 µΜ and 16.9 ± 0.4 µΜ, respectively. Further kinetic inhibition analysis of the most active derivative, DM151, demonstrated that this compound is a mixed inhibitor towards CDNB with inhibition constants of Ki = 4.1 ± 0.5 µM and Ki' = 0.536 ± 0.034 µM, while it is a competitive inhibitor towards GSH with a Ki = 0.98 ± 0.11 µM. Molecular docking studies were performed to interpret the differences in binding of ellagic acid and curcumin derivatives to hGSTA4-4. The in silico measured docking scores were consistent with the obtained experimental data. Hydrogen bonds appear to be the main contributors to the specific binding of monocarbonyl curcumin derivatives, while π-π stacking interactions play a key role in the enzyme-ellagic acid interaction. In vitro cytotoxicity assessment of the worst (DM148) and the best (DM151) inhibitors was performed against glioblastoma cell lines U-251 MG and U-87 MG. The results revealed that DM151 displays considerably higher cytotoxicity against both glioblastoma cell lines, while the glioblastoma cytotoxicity of DM148 was very limited. Furthermore, low and non-toxic doses of DM151 sensitized U-251 MG cells to the first-line glioblastoma chemotherapeutic temozolomide (TMZ), allowing us to propose for the first time that hGSTA4-4 inhibitors may be attractive therapeutic partners for TMZ to optimize its clinical effect in glioblastoma chemotherapy.

2.
Appl Microbiol Biotechnol ; 108(1): 163, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252132

RESUMEN

The misuse and overuse of antibiotics have contributed to a rapid emergence of antibiotic-resistant bacterial pathogens. This global health threat underlines the urgent need for innovative and novel antimicrobials. Endolysins derived from bacteriophages or prophages constitute promising new antimicrobials (so-called enzybiotics), exhibiting the ability to break down bacterial peptidoglycan (PG). In the present work, metagenomic analysis of soil samples, collected from thermal springs, allowed the identification of a prophage-derived endolysin that belongs to the N-acetylmuramoyl-L-alanine amidase type 2 (NALAA-2) family and possesses a LysM (lysin motif) region as a cell wall binding domain (CWBD). The enzyme (Ami1) was cloned and expressed in Escherichia coli, and its bactericidal and lytic activity was characterized. The results indicate that Ami1 exhibits strong bactericidal and antimicrobial activity against a broad range of bacterial pathogens, as well as against isolated peptidoglycan (PG). Among the examined bacterial pathogens, Ami1 showed highest bactericidal activity against Staphylococcus aureus sand Staphylococcus epidermidis cells. Thermostability analysis revealed a melting temperature of 64.2 ± 0.6 °C. Overall, these findings support the potential that Ami1, as a broad spectrum antimicrobial agent, could be further assessed as enzybiotic for the effective treatment of bacterial infections. KEY POINTS: • Metagenomic analysis allowed the identification of a novel prophage endolysin • The endolysin belongs to type 2 amidase family with lysin motif region • The endolysin displays high thermostability and broad bactericidal spectrum.


Asunto(s)
Bacteriófagos , Manantiales de Aguas Termales , Suelo , Peptidoglicano , Antibacterianos/farmacología , Escherichia coli/genética
3.
Antioxidants (Basel) ; 12(10)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37891962

RESUMEN

Microalgae are a renewable and sustainable source of bioactive compounds, such as essential amino acids, polyunsaturated fatty acids, and antioxidant compounds, that have been documented to have beneficial effects on nutrition and health. Among these natural products, the demand for natural antioxidants, as an alternative to synthetic antioxidants, has increased. The antioxidant activity of microalgae significantly varies between species and depends on growth conditions. In the last decade, microalgae have been explored in livestock animals as feed additives with the aim of improving both animals' health and performance as well as product quality and the environmental impact of livestock. These findings are highly dependent on the composition of microalgae strain and their amount in the diet. The use of carbohydrate-active enzymes can increase nutrient bioavailability as a consequence of recalcitrant microalgae cell wall degradation, making it a promising strategy for monogastric nutrition for improving livestock productivity. The use of microalgae as an alternative to conventional feedstuffs is becoming increasingly important due to food-feed competition, land degradation, water deprivation, and climate change. However, the cost-effective production and use of microalgae is a major challenge in the near future, and their cultivation technology should be improved by reducing production costs, thus increasing profitability.

4.
Antioxidants (Basel) ; 12(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36671048

RESUMEN

Pomegranate is a fruit bearing-plant that is well known for its medicinal properties. Pomegranate is a good source of phenolic acids, tannins, and flavonoids. Pomegranate juice and by-products have attracted the scientific interest due to their potential health benefits. Currently, the medical community has showed great interest in exploiting pomegranate potential as a protective agent against several human diseases including cancer. This is demonstrated by the fact that there are more than 800 reports in the literature reporting pomegranate's anticancer properties. This review is an update on the research outcomes of pomegranate's potential against different types of human diseases, emphasizing on cancer. In addition, perspectives of potential applications of pomegranate, as a natural additive aiming to improve the quality of animal products, are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...