Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (205)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38557733

RESUMEN

Social adversity in adolescence is prevalent and can negatively impact mental health trajectories. Modeling social stress in adolescent male and female rodents is needed to understand its effects on ongoing brain development and behavioral outcomes. The chronic social defeat stress paradigm (CSDS) has been widely used to model social stress in adult C57BL/6 male mice by leveraging on the aggressive behavior displayed by an adult male rodent to an intruder invading its territory. An advantage of this paradigm is that it allows to categorize defeated mice into resilient and susceptible groups based on their individual differences in social behavior 24 h after the last defeat session. Implementing this model in adolescent C57BL/6 mice has been challenging because adult or adolescent mice do not typically attack early adolescent male or female mice and because adolescence is a short period of life, encompassing discreet temporal windows of vulnerability. This limitation was overcome by adapting an accelerated version of the CSDS to be used for adolescent male and female mice. This 4-day stress paradigm with 2 physical attack sessions per day uses a C57BL/6 male adult to prime the CD-1 mouse for aggressiveness such that it readily attacks the male or female adolescent mouse. This model was termed accelerated social defeat stress (AcSD) for adolescent mice. Adolescent exposure to AcSD induces social avoidance 24 h later in both males and females, but only in a subset of defeated mice. This vulnerability occurs despite the number of attacks being consistent across sessions between resilient and susceptible groups. The AcSD model is short enough to allow exposure during discrete periods within adolescence, allows the segregation of mice according to the presence or absence of social avoidance behavior, and is the first model available to study social defeat stress in adolescent C57BL/6 female mice.


Asunto(s)
Conducta Social , Derrota Social , Masculino , Femenino , Animales , Ratones , Ratones Endogámicos C57BL , Estrés Psicológico/psicología
2.
Biol Psychiatry ; 95(1): 37-47, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37355003

RESUMEN

BACKGROUND: Adolescence is a unique period of psychosocial growth during which social adversity can negatively influence mental health trajectories. Understanding how adolescent social stress impacts males and females and why some individuals are particularly affected is becoming increasingly urgent. Social defeat stress models for adolescent male mice have been effective in reproducing some physical/psychological aspects of bullying. Designing a model suitable for females has proven challenging. METHODS: We report a version of the adolescent male accelerated social defeat stress (AcSD) paradigm adapted for females. Early adolescent C57BL/6J female mice (N = 107) were exposed to our modified AcSD procedure twice a day for 4 days and categorized as resilient or susceptible based on a social interaction test 24 hours later. Mice were then assessed for changes in Netrin-1/DCC guidance cue expression in dopamine systems, for inhibitory control in adulthood using the Go/No-Go task, or for alterations in dopamine connectivity organization in the matured prefrontal cortex. RESULTS: Most adolescent females showed protection against stress-induced social avoidance, but in adulthood, these resilient females developed inhibitory control deficits and showed diminution of prefrontal cortex presynaptic dopamine sites. Female mice classified as susceptible were protected against cognitive and dopaminergic alterations. AcSD did not alter Netrin-1/DCC in early adolescent females, contrary to previous findings with males. CONCLUSIONS: Preserving prosocial behavior in adolescent females may be important for survival advantage but seems to come at the price of developing persistent cognitive and dopamine deficiencies. The female AcSD paradigm produced findings comparable to those found in males, allowing mechanistic investigation in both sexes.


Asunto(s)
Dopamina , Derrota Social , Ratones , Masculino , Femenino , Animales , Netrina-1 , Dopamina/metabolismo , Ratones Endogámicos C57BL , Conducta Social , Estrés Psicológico/metabolismo
3.
Nat Commun ; 14(1): 4035, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37419977

RESUMEN

Initiating drug use during adolescence increases the risk of developing addiction or other psychopathologies later in life, with long-term outcomes varying according to sex and exact timing of use. The cellular and molecular underpinnings explaining this differential sensitivity to detrimental drug effects remain unexplained. The Netrin-1/DCC guidance cue system segregates cortical and limbic dopamine pathways in adolescence. Here we show that amphetamine, by dysregulating Netrin-1/DCC signaling, triggers ectopic growth of mesolimbic dopamine axons to the prefrontal cortex, only in early-adolescent male mice, underlying a male-specific vulnerability to enduring cognitive deficits. In adolescent females, compensatory changes in Netrin-1 protect against the deleterious consequences of amphetamine on dopamine connectivity and cognitive outcomes. Netrin-1/DCC signaling functions as a molecular switch which can be differentially regulated by the same drug experience as function of an individual's sex and adolescent age, and lead to divergent long-term outcomes associated with vulnerable or resilient phenotypes.


Asunto(s)
Anfetamina , Dopamina , Femenino , Ratones , Masculino , Animales , Anfetamina/farmacología , Dopamina/metabolismo , Netrina-1/metabolismo , Receptor DCC/genética , Receptor DCC/metabolismo , Axones/metabolismo
4.
eNeuro ; 9(1)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35105659

RESUMEN

Operant chambers are widely used in animal research to study cognition, motivation, and learning processes. Paired with the rapidly developing technologies for brain imaging and manipulations of brain activity, operant conditioning chambers are a powerful tool for neuroscience research. The behavioral testing and imaging setups that are commercially available are often quite costly. Here, we present a custom-built operant chamber that can be constructed in a few days by an unexperienced user with relatively inexpensive, widely available materials. The advantages of our operant setup compared with other open-source and closed-source solutions are its relatively low cost, its support of complex behavioral tasks, its user-friendly setup, and its validated functionality with video imaging of behavior and calcium imaging using the UCLA Miniscope. Using this setup, we replicate our previously published findings showing that mice exposed to social defeat stress in adolescence have inhibitory control impairments in the Go/No-Go task when they reach adulthood. We also present calcium imaging data of medial prefrontal cortex (mPFC) neuronal activity acquired during Go/No-Go testing in freely moving mice and show that neuronal population activity increases from day 1 to day 14 of the task. We propose that our operant chamber is a cheaper alternative to its commercially available counterparts and offers a better balance between versatility and user-friendly setup than other open-source alternatives.


Asunto(s)
Calcio , Condicionamiento Operante , Animales , Cognición , Aprendizaje , Ratones , Pruebas Neuropsicológicas
5.
eNeuro ; 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33619036

RESUMEN

For some individuals, social stress is a risk factor for psychiatric disorders characterised by adolescent onset, prefrontal cortex (PFC) dysfunction and cognitive impairments. Social stress may be particularly harmful during adolescence when dopamine (DA) axons are still growing to the PFC, rendering them sensitive to environmental influences. The guidance cue Netrin-1 and its receptor, DCC, coordinate to control mesocorticolimbic DA axon targeting and growth during this age. Here we adapted the accelerated social defeat (AcSD) paradigm to expose male mice to social stress in either adolescence or adulthood and categorised them as "resilient" or "susceptible" based on social avoidance behaviour. We examined whether stress would alter the expression of DCC and Netrin-1 in mesolimbic dopamine regions and would have enduring consequences on PFC dopamine connectivity and cognition. While in adolescence the majority of mice are resilient but exhibit risk-taking behaviour, AcSD in adulthood leads to a majority of susceptible mice without altering anxiety-like traits. In adolescent, but not adult mice, AcSD dysregulates DCC and Netrin-1 expression in mesolimbic DA regions. These molecular changes in adolescent mice are accompanied by changes in PFC DA connectivity. Following AcSD in adulthood, cognitive function remains unaffected, but all mice exposed to AcSD in adolescence show deficits in inhibitory control when they reach adulthood. These findings indicate that exposure to AcSD in adolescence vs. adulthood has substantially different effects on brain and behaviour and that stress-induced social avoidance in adolescence does not predict vulnerability to deficits in cognitive performance.Significance statement During adolescence, dopamine circuitries undergo maturational changes which may render them particularly vulnerable to social stress. While social stress can be detrimental to adolescents and adults, it may engage different mechanisms and impact different domains, depending on age. The accelerated social defeat (AcSD) model implemented here allows exposing adolescent and adult male mice to comparable social stress levels. AcSD in adulthood leads to a majority of socially avoidant mice. However, the predominance of AcSD-exposed adolescent mice does not develop social avoidance, and these resilient mice show risk-taking behaviour. Nonetheless, in adolescence only, AcSD dysregulates Netrin-1/DCC expression in mesolimbic dopamine regions, possibly disrupting mesocortical dopamine and cognition. The unique adolescent responsiveness to stress may explain increased psychopathology risk at this age.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...