Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0071524, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39329490

RESUMEN

Wastewater treatment facilities can filter out some plastics before they reach the open environment, yet microplastics often persist throughout these systems. As they age, microplastics in wastewater may both leach and sorb pollutants and fragment to provide an increased surface area for bacterial attachment and conjugation, possibly impacting antimicrobial resistance (AMR) traits. Despite this, little is known about the effects of persistent plastic pollution on microbial functioning. To address this knowledge gap, we deployed five different artificially weathered plastic types and a glass control into the final maturation pond of a municipal wastewater treatment plant in Otautahi-Christchurch, Aotearoa/New Zealand. We sampled the plastic-associated biofilms (plastisphere) at 2, 6, 26, and 52 weeks, along with the ambient pond water, at three different depths (20, 40, and 60 cm from the pond water surface). We investigated the changes in plastisphere microbial diversity and functional potential through metagenomic sequencing. Bacterial 16S ribosomal RNA genes composition did not vary among plastic types and glass controls (P = 0.997) but varied among sampling times [permutational multivariate analysis of variance (PERMANOVA), P = 0.001] and depths (PERMANOVA, P = 0.011). Overall, there was no polymer-substrate specificity evident in the total composition of genes (PERMANOVA, P = 0.67), but sampling time (PERMANOVA, P = 0.002) and depth were significant factors (PERMANOVA, P = 0.001). The plastisphere housed diverse AMR gene families, potentially influenced by biofilm-meditated conjugation. The plastisphere also harbored an increased abundance of genes associated with the biodegradation of nylon, or nylon-associated substances, including nylon oligomer-degrading enzymes and hydrolases.IMPORTANCEPlastic pollution is pervasive and ubiquitous. Occurrences of plastics causing entanglement or ingestion, the leaching of toxic additives and persistent organic pollutants from environmental plastics, and their consequences for marine macrofauna are widely reported. However, little is known about the effects of persistent plastic pollution on microbial functioning. Shotgun metagenomics sequencing provides us with the necessary tools to examine broad-scale community functioning to further investigate how plastics influence microbial communities. This study provides insight into the functional consequence of continued exposure to waste plastic by comparing the prokaryotic functional potential of biofilms on five types of plastic [linear low-density polyethylene (LLDPE), nylon-6, polyethylene terephthalate, polylactic acid, and oxygen-degradable LLDPE], glass, and ambient pond water over 12 months and at different depths (20, 40, and 60 cm) within a tertiary maturation pond of a municipal wastewater treatment plant.

2.
MethodsX ; 12: 102761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38846436

RESUMEN

Few methods exist detailing the extraction of microplastics from organic matrices. A validated method for the successful extraction of microplastics from solid biowastes including biosolids, compost, and soil for spectroscopic analysis by micro-Fourier transform infrared spectroscopy (µ-FTIR) was developed. Solid dry biowastes were first digested with a wet peroxide oxidation (WPO) with iron (II) solution and 30% hydrogen peroxide followed by sequential density separations with ultra-pure water and 1.8 g cm-3 NaI in an optimised sediment-microplastic isolation (SMI) unit. The average recoveries for spiked microplastics were 92, 95 and 98% for bagged compost, biosolids, and soil, respectively. This method ensures a high microplastic recovery by first chemically disintegrating biowaste aggregates without employing destructive methods like milling and allows for successful density separations where the settled fraction is isolated off from the supernatant, allowing thorough rinsing of the equipment and thus a greater transferal of particles into the vacuum filtering device. Minimal processing steps reduce the instance of introducing contamination and particle loss.•Digestion as a first step to disintegrate aggregates to release entrapped microplastics•Density separation with SMI unit with the method adapted for biowastes•Minimal steps to reduce contamination and particle loss.

3.
Environ Microbiome ; 19(1): 34, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750536

RESUMEN

BACKGROUND: Plastic pollution is a severe threat to marine ecosystems. While some microbial enzymes can degrade certain plastics, the ability of the global ocean microbiome to break down diverse environmental plastics remains limited. We employed metatranscriptomic data from an international ocean survey to explore global and regional patterns in microbial plastic degradation potential. RESULTS: On a global oceanic scale, we found no significant correlation between levels of plastic pollution and the expression of genes encoding enzymes putatively identified as capable of plastic degradation. Even when looking at different regional scales, ocean depth layers, or plastic types, we found no strong or even moderate correlation between plastic pollution and relative abundances of transcripts for enzymes with presumed plastic biodegradation potential. Our data, however, indicate that microorganisms in the Southern Ocean show a higher potential for plastic degradation, making them more appealing candidates for bioprospecting novel plastic-degrading enzymes. CONCLUSION: Our research contributes to understanding the complex global relationship between plastic pollution and microbial plastic degradation potential. We reveal that the transcription of putative plastic-degrading genes in the global ocean microbiome does not correlate to marine plastic pollution, highlighting the ongoing danger that plastic poses to marine environments threatened by plastic pollution.

4.
Sci Total Environ ; 917: 170301, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38272094

RESUMEN

The fragmentation of plastic debris is a key pathway to the formation of microplastic pollution. These disintegration processes depend on the materials' physical and chemical characteristics, but insight into these interrelationships is still limited, especially under natural conditions. Five plastics of known polymer/additive compositions and processing histories were deployed in aquatic environments and recovered after six and twelve months. The polymer types used were linear low density polyethylene (LLDPE), oxo-degradable LLDPE (oxoLLDPE), poly(ethylene terephthalate) (PET), polyamide-6 (PA6), and poly(lactic acid) (PLA). Four geographically distinct locations across Aotearoa/New Zealand were chosen: three marine sites and a wastewater treatment plant (WWTP). Accelerated UV-weathering under controlled laboratory conditions was also carried out to evaluate artificial ageing as a model for plastic degradation in the natural environment. The samples' physical characteristics and surface microstructures were studied for each deployment location and exposure time. The strongest effects were found for oxoLLDPE upon artificial ageing, with increased crystallinity, intense surface cracking, and substantial deterioration of its mechanical properties. However, no changes to the same extent were found after recovery of the deployed material. In the deployment environments, the chemical nature of the plastics was the most relevant factor determining their behaviours. Few significant differences between the four aquatic locations were identified, except for PA6, where indications for biological surface degradation were found only in seawater, not the WWTP. In some cases, artificial ageing reasonably mimicked the changes which some plastic properties underwent in aquatic environments, but generally, it was no reliable model for natural degradation processes. The findings from this study have implications for the understanding of the initial phases of plastic degradation in aquatic environments, eventually leading to microplastics formation. They can also guide the interpretation of accelerated laboratory ageing for the fate of aquatic plastic pollution, and for the testing of aged plastic samples.

5.
Mar Pollut Bull ; 198: 115810, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38006872

RESUMEN

Plastic pollution causes detrimental environmental impacts, which are increasingly attributed to chemical additives. However, the behaviour of plastic additives in the marine environment is poorly understood. We used a marine deployment experiment to examine the impact of weathering on the extractables profile, analysed by liquid chromatography-mass spectrometry, of four plastics at two locations over nine months in Aotearoa/New Zealand. The concentration of additives in polyethylene and oxo-degradable polyethylene were strongly influenced by artificial weathering, with deployment location and time less influential. By comparison, polyamide 6 and polyethylene terephthalate were comparatively inert with minimal change in response to artificial weathering or deployment time. Non-target analysis revealed extensive differentiation between non-aged and aged polyethylene after deployment, concordant with the targeted analysis. These observations highlight the need to consider the impact of leaching and weathering on plastic composition when quantifying the potential impact and risk of plastic pollution within receiving environments.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Polietileno/análisis , Tereftalatos Polietilenos , Contaminación Ambiental/análisis , Tiempo (Meteorología) , Contaminantes Químicos del Agua/análisis
6.
Biofouling ; 39(4): 427-443, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37341323

RESUMEN

Complex microbial communities colonize plastic substrates over time, strongly influencing their fate and potential impacts on marine ecosystems. Among the first colonizers, diatoms play an important role in the development of this 'plastiphere'. We investigated 936 biofouling samples and the factors influencing diatom communities associated with plastic colonization. These factors included geographic location (up to 800 km apart), duration of substrate submersion (1 to 52 weeks), plastics (5 polymer types) and impact of artificial ageing with UV light. Diatom communities colonizing plastic debris were primarily determined by their geographic location and submersion time, with the strongest changes occurring within two weeks of submersion. Several taxa were identified as early colonizers (e.g. Cylindrotheca, Navicula and Nitzschia spp.) with known strong adhesion capabilities. To a lesser extent, plastic-type and UV-ageing significantly affected community composition, with 14 taxa showing substrate-specificity. This study highlights the role of plastics types-state for colonization in the ocean.


Asunto(s)
Diatomeas , Plásticos , Plásticos/química , Ecosistema , Biopelículas , Análisis Espacio-Temporal
7.
Curr Biol ; 32(12): 2596-2609.e7, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35561678

RESUMEN

Reef-building corals are endangered animals with a complex colonial organization. Physiological mechanisms connecting multiple polyps and integrating them into a coral colony are still enigmatic. Using live imaging, particle tracking, and mathematical modeling, we reveal how corals connect individual polyps and form integrated polyp groups via species-specific, complex, and stable networks of currents at their surface. These currents involve surface mucus of different concentrations, which regulate joint feeding of the colony. Inside the coral, within the gastrovascular system, we expose the complexity of bidirectional branching streams that connect individual polyps. This system of canals extends the surface area by 4-fold and might improve communication, nutrient supply, and symbiont transfer. Thus, individual polyps integrate via complex liquid dynamics on the surface and inside the colony.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Arrecifes de Coral , Ambiente , Especificidad de la Especie
8.
Database (Oxford) ; 20222022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35266524

RESUMEN

The number of publications reporting putative plastic-degrading microbes and proteins is continuously increasing, necessitating the compilation of these data and the development of tools to facilitate their analysis. We developed the PlasticDB web application to address this need, which comprises a database of microorganisms and proteins reported to biodegrade plastics. Associated metadata, such as the techniques utilized to assess biodegradation, the environmental source of microbial isolate and presumed thermophilic traits are also reported. Proteins in the database are categorized according to the plastic type they are reported to degrade. Each protein structure has been predicted in silico and can be visualized or downloaded for further investigation. In addition to standard database functionalities, such as searching, filtering and retrieving database records, we implemented several analytical tools that accept inputs, including gene, genome, metagenome, transcriptomes, metatranscriptomes and taxa table data. Users can now analyze their datasets for the presence of putative plastic-degrading species and potential plastic-degrading proteins and pathways from those species. Database URL:http://plasticdb.org.


Asunto(s)
Metagenoma , Plásticos , Biodegradación Ambiental , Bases de Datos Factuales , Plásticos/metabolismo
9.
Emerg Top Life Sci ; 6(1): 81-93, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35137913

RESUMEN

Plastic pollution in a growing problem globally. In addition to the continuous flow of plastic particles to the environment from direct sources, and through the natural wear and tear of items, the plastics that are already there have the potential to breakdown further and therefore provide an immense source of plastic particles. With the continued rise in levels of plastic production, and consequently increasing levels entering our marine environments it is imperative that we understand its impacts. There is evidence microplastic and nanoplastic (MNP) pose a serious threat to all the world's marine ecosystems and biota, across all taxa and trophic levels, having individual- to ecosystem-level impacts, although these impacts are not fully understood. Microplastics (MPs; 0.1-5 mm) have been consistently found associated with the biota, water and sediments of all coral reefs studied, but due to limitations in the current techniques, a knowledge gap exists for the level of nanoplastic (NP; <1 µm). This is of particular concern as it is this size fraction that is thought to pose the greatest risk due to their ability to translocate into different organs and across cell membranes. Furthermore, few studies have examined the interactions of MNP exposure and other anthropogenic stressors such as ocean acidification and rising temperature. To support the decision-making required to protect these ecosystems, an advancement in standardised methods for the assessment of both MP and NPs is essential. This knowledge, and that of predicted levels can then be used to determine potential impacts more accurately.


Asunto(s)
Antozoos , Microplásticos , Animales , Ecosistema , Concentración de Iones de Hidrógeno , Plásticos , Agua de Mar
10.
Mar Pollut Bull ; 173(Pt B): 113084, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34775153

RESUMEN

Here we provide a first assessment of microplastics (MPs) in stomach contents of 15 common dolphins (Delphinus delphis) from both single and mass stranding events along the New Zealand coast between 2019 and 2020. MPs were observed in all examined individuals, with an average of 7.8 pieces per stomach. Most MPs were fragments (77%, n = 90) as opposed to fibres (23%, n = 27), with translucent/clear (46%) the most prevalent colour. Fourier transform infrared (FTIR) spectroscopy revealed polyethylene terephthalate (65%) as the most predominant polymer in fibres, whereas polypropylene (31%) and acrylonitrile butadiene styrene (20%) were more frequently recorded as fragments. Mean fragment and fibre size was 584 µm and 1567 µm, respectively. No correlation between total number of MPs and biological parameters (total body length, age, sexual maturity, axillary girth, or blubber thickness) was observed, with similar levels of MPs observed between each of the mass stranding events. Considering MPs are being increasingly linked to a wide range of deleterious effects across taxa, these findings in a typically pelagic marine sentinel species warrants further investigation.


Asunto(s)
Delfín Común , Contaminantes Químicos del Agua , Animales , Monitoreo del Ambiente , Análisis de Fourier , Microplásticos , Nueva Zelanda , Plásticos , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
11.
mSystems ; 6(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468707

RESUMEN

The number of plastic-degrading microorganisms reported is rapidly increasing, making it possible to explore the conservation and distribution of presumed plastic-degrading traits across the diverse microbial tree of life. Putative degraders of conventional high-molecular-weight polymers, including polyamide, polystyrene, polyvinylchloride, and polypropylene, are spread widely across bacterial and fungal branches of the tree of life, although evidence for plastic degradation by a majority of these taxa appears limited. In contrast, we found strong degradation evidence for the synthetic polymer polylactic acid (PLA), and the microbial species related to its degradation are phylogenetically conserved among the bacterial family Pseudonocardiaceae We collated data on genes and enzymes related to the degradation of all types of plastic to identify 16,170 putative plastic degradation orthologs by mining publicly available microbial genomes. The plastic with the largest number of putative orthologs, 10,969, was the natural polymer polyhydroxybutyrate (PHB), followed by the synthetic polymers polyethylene terephthalate (PET) and polycaprolactone (PCL), with 8,233 and 6,809 orthologs, respectively. These orthologous genes were discovered in the genomes of 6,000 microbial species, and most of them are as yet not identified as plastic degraders. Furthermore, all these species belong to 12 different microbial phyla, of which just 7 phyla have reported degraders to date. We have centralized information on reported plastic-degrading microorganisms within an interactive and updatable phylogenetic tree and database to confirm the global and phylogenetic diversity of putative plastic-degrading taxa and provide new insights into the evolution of microbial plastic-degrading capabilities and avenues for future discovery.IMPORTANCE We have collated the most complete database of microorganisms identified as being capable of degrading plastics to date. These data allow us to explore the phylogenetic distribution of these organisms and their enzymes, showing that traits for plastic degradation are predominantly not phylogenetically conserved. We found 16,170 putative plastic degradation orthologs in the genomes of 12 different phyla, which suggests a vast potential for the exploration of these traits in other taxa. Besides making the database available to the scientific community, we also created an interactive phylogenetic tree that can display all of the collated information, facilitating visualization and exploration of the data. Both the database and the tree are regularly updated to keep up with new scientific reports. We expect that our work will contribute to the field by increasing the understanding of the genetic diversity and evolution of microbial plastic-degrading traits.

12.
Nat Microbiol ; 1(6): 16042, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-27572833

RESUMEN

Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.


Asunto(s)
Antozoos/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Biomasa , Arrecifes de Coral , Algas Marinas/crecimiento & desarrollo , Algas Marinas/metabolismo , Animales , Antozoos/metabolismo , Bacterias/metabolismo , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Ciclo del Carbono , Eutrofización , Glucólisis , Vía de Pentosa Fosfato
13.
PeerJ ; 4: e1758, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26989611

RESUMEN

Diuron is a herbicide commonly used in agricultural areas where excess application causes it to leach into rivers, reach sensitive marine environments like the Great Barrier Reef (GBR) lagoon and pose risks to marine life. To investigate the impact of diuron on whole prokaryotic communities that underpin the marine food web and are integral to coral reef health, GBR lagoon water was incubated with diuron at environmentally-relevant concentration (8 µg/L), and sequenced at specific time points over the following year. 16S rRNA gene amplicon profiling revealed no significant short- or long-term effect of diuron on microbiome structure. The relative abundance of prokaryotic phototrophs was not significantly altered by diuron, which suggests that they were largely tolerant at this concentration. Assembly of a metagenome derived from waters sampled at a similar location in the GBR lagoon did not reveal the presence of mutations in the cyanobacterial photosystem that could explain diuron tolerance. However, resident phages displayed several variants of this gene and could potentially play a role in tolerance acquisition. Slow biodegradation of diuron was reported in the incubation flasks, but no correlation with the relative abundance of heterotrophs was evident. Analysis of metagenomic reads supports the hypothesis that previously uncharacterized hydrolases carried by low-abundance species may mediate herbicide degradation in the GBR lagoon. Overall, this study offers evidence that pelagic phototrophs of the GBR lagoon may be more tolerant of diuron than other tropical organisms, and that heterotrophs in the microbial seed bank may have the potential to degrade diuron and alleviate local anthropogenic stresses to inshore GBR ecosystems.

14.
ISME J ; 9(9): 1916-27, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25668159

RESUMEN

Reef-building corals form complex relationships with a range of microorganisms including bacteria, archaea, fungi and the unicellular microalgae of the genus Symbiodinium, which together form the coral holobiont. These symbionts are known to have both beneficial and deleterious effects on their coral host, but little is known about what the governing factors of these relationships are, or the interactions that exist between the different members of the holobiont and their environment. Here we used 16S ribosomal RNA gene amplicon sequencing to investigate how archaeal and bacterial communities associated with the widespread scleractinian coral Seriatopora hystrix are influenced by extrinsic (reef habitat and geographic location) and intrinsic (host genotype and Symbiodinium subclade) factors. Bacteria dominate the microbiome of S. hystrix, with members of the Alphaproteobacteria, Gammaproteobacteria and Bacteriodetes being the most predominant in all samples. The richness and evenness of these communities varied between reef habitats, but there was no significant difference between distinct coral host lineages or corals hosting distinct Symbiodinium subclades. The coral microbiomes correlated to reef habitat (depth) and geographic location, with a negative correlation between Alpha- and Gammaproteobacteria, driven by the key members of both groups (Rhodobacteraceae and Hahellaceae, respectively), which showed significant differences between location and depth. This study suggests that the control of microbial communities associated with the scleractinian coral S. hystrix is driven primarily by external environmental conditions rather than by those directly associated with the coral holobiont.


Asunto(s)
Antozoos/microbiología , Arrecifes de Coral , Microbiota/genética , Animales , Archaea/genética , Australia , Gammaproteobacteria/genética , Genotipo , ARN Ribosómico 16S/genética , Rhodobacteraceae/genética
15.
Proc Natl Acad Sci U S A ; 110(38): 15342-7, 2013 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-24003127

RESUMEN

Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century.


Asunto(s)
Contaminación del Aire/efectos adversos , Antozoos/crecimiento & desarrollo , Calcificación Fisiológica/fisiología , Calcio/metabolismo , Dióxido de Carbono/análisis , Arrecifes de Coral , Agua de Mar/química , Análisis de Varianza , Animales , Antozoos/metabolismo , Conservación de los Recursos Naturales , Cartilla de ADN/genética , Sedimentos Geológicos/microbiología , Metagenoma/genética , Océano Pacífico , Reacción en Cadena de la Polimerasa , Queensland , Estaciones del Año , Temperatura
16.
PLoS One ; 6(6): e20946, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21695083

RESUMEN

Hydroids form symbiotic relationships with a range of invertebrate hosts. Where they live with colonial invertebrates such as corals or bryozoans the hydroids may benefit from the physical support and protection of their host's hard exoskeleton, but how they interact with them is unknown. Electron microscopy was used to investigate the physical interactions between the colonial hydroid Zanclea margaritae and its reef-building coral host Acropora muricata. The hydroid tissues extend below the coral tissue surface sitting in direct contact with the host's skeleton. Although this arrangement provides the hydroid with protective support, it also presents problems of potential interference with the coral's growth processes and exposes the hydroid to overgrowth and smothering. Desmocytes located within the epidermal layer of the hydroid's perisarc-free hydrorhizae fasten it to the coral skeleton. The large apical surface area of the desmocyte and high bifurcation of the distal end within the mesoglea, as well as the clustering of desmocytes suggests that a very strong attachment between the hydroid and the coral skeleton. This is the first study to provide a detailed description of how symbiotic hydroids attach to their host's skeleton, utilising it for physical support. Results suggest that the loss of perisarc, a characteristic commonly associated with symbiosis, allows the hydroid to utilise desmocytes for attachment. The use of these anchoring structures provides a dynamic method of attachment, facilitating detachment from the coral skeleton during extension, thereby avoiding overgrowth and smothering enabling the hydroid to remain within the host colony for prolonged periods of time.


Asunto(s)
Antozoos/anatomía & histología , Hidrozoos/anatomía & histología , Esqueleto , Simbiosis , Animales , Antozoos/citología , Antozoos/fisiología , Hidrozoos/citología , Hidrozoos/fisiología
17.
PLoS One ; 3(2): e1584, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18301735

RESUMEN

Microbes are key players in both healthy and degraded coral reefs. A combination of metagenomics, microscopy, culturing, and water chemistry were used to characterize microbial communities on four coral atolls in the Northern Line Islands, central Pacific. Kingman, a small uninhabited atoll which lies most northerly in the chain, had microbial and water chemistry characteristic of an open ocean ecosystem. On this atoll the microbial community was equally divided between autotrophs (mostly Prochlorococcus spp.) and heterotrophs. In contrast, Kiritimati, a large and populated ( approximately 5500 people) atoll, which is most southerly in the chain, had microbial and water chemistry characteristic of a near-shore environment. On Kiritimati, there were 10 times more microbial cells and virus-like particles in the water column and these microbes were dominated by heterotrophs, including a large percentage of potential pathogens. Culturable Vibrios were common only on Kiritimati. The benthic community on Kiritimati had the highest prevalence of coral disease and lowest coral cover. The middle atolls, Palmyra and Tabuaeran, had intermediate densities of microbes and viruses and higher percentages of autotrophic microbes than either Kingman or Kiritimati. The differences in microbial communities across atolls could reflect variation in 1) oceaonographic and/or hydrographic conditions or 2) human impacts associated with land-use and fishing. The fact that historically Kingman and Kiritimati did not differ strongly in their fish or benthic communities (both had large numbers of sharks and high coral cover) suggest an anthropogenic component in the differences in the microbial communities. Kingman is one of the world's most pristine coral reefs, and this dataset should serve as a baseline for future studies of coral reef microbes. Obtaining the microbial data set, from atolls is particularly important given the association of microbes in the ongoing degradation of coral reef ecosystems worldwide.


Asunto(s)
Antozoos/microbiología , Ecosistema , Geografía , Microbiología del Agua , Enfermedades de los Animales/microbiología , Animales , Humanos , Biología Marina , Agua/química
18.
PLoS One ; 3(2): e1548, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-18301734

RESUMEN

Effective conservation requires rigorous baselines of pristine conditions to assess the impacts of human activities and to evaluate the efficacy of management. Most coral reefs are moderately to severely degraded by local human activities such as fishing and pollution as well as global change, hence it is difficult to separate local from global effects. To this end, we surveyed coral reefs on uninhabited atolls in the northern Line Islands to provide a baseline of reef community structure, and on increasingly populated atolls to document changes associated with human activities. We found that top predators and reef-building organisms dominated unpopulated Kingman and Palmyra, while small planktivorous fishes and fleshy algae dominated the populated atolls of Tabuaeran and Kiritimati. Sharks and other top predators overwhelmed the fish assemblages on Kingman and Palmyra so that the biomass pyramid was inverted (top-heavy). In contrast, the biomass pyramid at Tabuaeran and Kiritimati exhibited the typical bottom-heavy pattern. Reefs without people exhibited less coral disease and greater coral recruitment relative to more inhabited reefs. Thus, protection from overfishing and pollution appears to increase the resilience of reef ecosystems to the effects of global warming.


Asunto(s)
Antozoos , Biomasa , Conservación de los Recursos Naturales , Ecosistema , Geografía , Animales , Eucariontes , Peces , Efecto Invernadero , Contaminantes del Agua
19.
Ecol Lett ; 9(7): 835-45, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16796574

RESUMEN

Declines in coral cover are generally associated with increases in the abundance of fleshy algae. In many cases, it remains unclear whether algae are responsible, directly or indirectly, for coral death or whether they simply settle on dead coral surfaces. Here, we show that algae can indirectly cause coral mortality by enhancing microbial activity via the release of dissolved compounds. When coral and algae were placed in chambers together but separated by a 0.02 mum filter, corals suffered 100% mortality. With the addition of the broad-spectrum antibiotic ampicillin, mortality was completely prevented. Physiological measurements showed complementary patterns of increasing coral stress with proximity to algae. Our results suggest that as human impacts increase and algae become more abundant on reefs a positive feedback loop may be created whereby compounds released by algae enhance microbial activity on live coral surfaces causing mortality of corals and further algal growth.


Asunto(s)
Antozoos , Eucariontes , Animales , Antozoos/microbiología , Bacterias/química , Ecosistema , Mortalidad , Dinámica Poblacional
20.
Dis Aquat Organ ; 69(1): 79-88, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16703769

RESUMEN

Culture-independent molecular (16S ribosomal RNA) techniques showed distinct differences in bacterial communities associated with white band disease (WBD) Type I and healthy elkhorn coral Acropora palmata. Differences were apparent at all levels, with a greater diversity present in tissues of diseased colonies. The bacterial community associated with remote, non-diseased coral was distinct from the apparently healthy tissues of infected corals several cm from the disease lesion. This demonstrates a whole-organism effect from what appears to be a localised disease lesion, an effect that has also been recently demonstrated in white plague-like disease in star coral Montastraea annularis. The pattern of bacterial community structure changes was similar to that recently demonstrated for white plague-like disease and black band disease. Some of the changes are likely to be explained by the colonisation of dead and degrading tissues by a micro-heterotroph community adapted to the decomposition of coral tissues. However, specific ribosomal types that are absent from healthy tissues appear consistently in all samples of each of the diseases. These ribotypes are closely related members of a group of alpha-proteobacteria that cause disease, notably juvenile oyster disease, in other marine organisms. It is clearly important that members of this group are isolated for challenge experiments to determine their role in the diseases.


Asunto(s)
Antozoos/microbiología , Bacterias/genética , Biodiversidad , Ecosistema , ARN Ribosómico 16S/genética , Animales , Bacterias/clasificación , Secuencia de Bases , Clonación Molecular , Cartilla de ADN/química , ADN Bacteriano/química , ADN Ribosómico/química , Electroforesis en Gel de Poliacrilamida , Datos de Secuencia Molecular , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA