Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuron ; 110(20): 3302-3317.e7, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36070750

RESUMEN

Homeostatic plasticity (HP) encompasses a suite of compensatory physiological processes that counteract neuronal perturbations, enabling brain resilience. Currently, we lack a complete description of the homeostatic processes that operate within the mammalian brain. Here, we demonstrate that acute, partial AMPAR-specific antagonism induces potentiation of presynaptic neurotransmitter release in adult hippocampus, a form of compensatory plasticity that is consistent with the expression of presynaptic homeostatic plasticity (PHP) documented at peripheral synapses. We show that this compensatory plasticity can be induced within minutes, requires postsynaptic NMDARs, and is expressed via correlated increases in dendritic spine volume, active zone area, and docked vesicle number. Further, simultaneous postsynaptic genetic reduction of GluA1, GluA2, and GluA3 in triple heterozygous knockouts induces potentiation of presynaptic release. Finally, induction of compensatory plasticity at excitatory synapses induces a parallel, NMDAR-dependent potentiation of inhibitory transmission, a cross-modal effect consistent with the anti-epileptic activity of AMPAR-specific antagonists used in humans.


Asunto(s)
Receptores de N-Metil-D-Aspartato , Sinapsis , Humanos , Animales , Sinapsis/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/fisiología , Homeostasis/fisiología , Neurotransmisores/metabolismo , Plasticidad Neuronal/fisiología , Mamíferos/metabolismo
2.
Neuron ; 110(17): 2705-2707, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36076334

RESUMEN

In this issue of Neuron, Imoto et al. report that a splice variant of dynamin (Dyn1xA) interacts with syndapin to form a molecular condensate at the edge of the presynaptic active zone. This enables rapid recruitment of proteins to endocytic sites essential for powering ultrafast endocytosis.


Asunto(s)
Proteínas Portadoras , Vesículas Sinápticas , Proteínas Portadoras/metabolismo , Dinaminas/metabolismo , Endocitosis/fisiología , Neuronas/metabolismo , Vesículas Sinápticas/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(30): e2117135119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862456

RESUMEN

The endoplasmic reticulum (ER) forms a continuous and dynamic network throughout a neuron, extending from dendrites to axon terminals, and axonal ER dysfunction is implicated in several neurological disorders. In addition, tight junctions between the ER and plasma membrane (PM) are formed by several molecules including Kv2 channels, but the cellular functions of many ER-PM junctions remain unknown. Recently, dynamic Ca2+ uptake into the ER during electrical activity was shown to play an essential role in synaptic transmission. Our experiments demonstrate that Kv2.1 channels are necessary for enabling ER Ca2+ uptake during electrical activity, as knockdown (KD) of Kv2.1 rendered both the somatic and axonal ER unable to accumulate Ca2+ during electrical stimulation. Moreover, our experiments demonstrate that the loss of Kv2.1 in the axon impairs synaptic vesicle fusion during stimulation via a mechanism unrelated to voltage. Thus, our data demonstrate that a nonconducting role of Kv2.1 exists through its binding to the ER protein VAMP-associated protein (VAP), which couples ER Ca2+ uptake with electrical activity. Our results further suggest that Kv2.1 has a critical function in neuronal cell biology for Ca2+ handling independent of voltage and reveals a critical pathway for maintaining ER lumen Ca2+ levels and efficient neurotransmitter release. Taken together, these findings reveal an essential nonclassical role for both Kv2.1 and the ER-PM junctions in synaptic transmission.


Asunto(s)
Retículo Endoplásmico , Canales de Potasio Shab , Calcio/metabolismo , Señalización del Calcio , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Canales de Potasio Shab/metabolismo , Transmisión Sináptica
4.
Proc Natl Acad Sci U S A ; 117(47): 29937-29947, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168717

RESUMEN

Analysis of the presynaptic action potential's (APsyn) role in synaptic facilitation in hippocampal pyramidal neurons has been difficult due to size limitations of axons. We overcame these size barriers by combining high-resolution optical recordings of membrane potential, exocytosis, and Ca2+ in cultured hippocampal neurons. These recordings revealed a critical and selective role for Kv1 channel inactivation in synaptic facilitation of excitatory hippocampal neurons. Presynaptic Kv1 channel inactivation was mediated by the Kvß1 subunit and had a surprisingly rapid onset that was readily apparent even in brief physiological stimulation paradigms including paired-pulse stimulation. Genetic depletion of Kvß1 blocked all broadening of the APsyn during high-frequency stimulation and eliminated synaptic facilitation without altering the initial probability of vesicle release. Thus, using all quantitative optical measurements of presynaptic physiology, we reveal a critical role for presynaptic Kv channels in synaptic facilitation at presynaptic terminals of the hippocampus upstream of the exocytic machinery.


Asunto(s)
Hipocampo/metabolismo , Canal de Potasio Kv1.3/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Células Piramidales/metabolismo , Potenciales Sinápticos/fisiología , Animales , Calcio/metabolismo , Células Cultivadas , Venenos Elapídicos/farmacología , Exocitosis/efectos de los fármacos , Exocitosis/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Hipocampo/citología , Microscopía Intravital , Canal de Potasio Kv1.3/genética , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Ratones , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Imagen Óptica , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Cultivo Primario de Células , Células Piramidales/efectos de los fármacos , Ratas , Potenciales Sinápticos/efectos de los fármacos
5.
Nat Commun ; 11(1): 2464, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424147

RESUMEN

Information within the brain travels from neuron to neuron across billions of synapses. At any given moment, only a small subset of neurons and synapses are active, but finding the active synapses in brain tissue has been a technical challenge. Here we introduce SynTagMA to tag active synapses in a user-defined time window. Upon 395-405 nm illumination, this genetically encoded marker of activity converts from green to red fluorescence if, and only if, it is bound to calcium. Targeted to presynaptic terminals, preSynTagMA allows discrimination between active and silent axons. Targeted to excitatory postsynapses, postSynTagMA creates a snapshot of synapses active just before photoconversion. To analyze large datasets, we show how to identify and track the fluorescence of thousands of individual synapses in an automated fashion. Together, these tools provide an efficient method for repeatedly mapping active neurons and synapses in cell culture, slice preparations, and in vivo during behavior.


Asunto(s)
Imagenología Tridimensional , Sinapsis/fisiología , Potenciales de Acción , Animales , Axones/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Femenino , Fluorescencia , Hipocampo/citología , Luz , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Sinaptofisina/metabolismo , Factores de Tiempo
6.
Front Cell Neurosci ; 13: 52, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30881287

RESUMEN

Everything we see and do is regulated by electrical signals in our nerves and muscle. Ion channels are crucial for sensing and generating electrical signals. Two voltage-dependent conductances, Na+ and K+, form the bedrock of the electrical impulse in the brain known as the action potential. Several classes of mammalian neurons express combinations of nearly 100 different varieties of these two voltage-dependent channels and their subunits. Not surprisingly, this variability orchestrates a diversity of action potential shapes and firing patterns that have been studied in detail at neural somata. A remarkably understudied phenomena exists in subcellular compartments of the axon, where action potentials initiate synaptic transmission. Ion channel research was catalyzed by the invention of glass electrodes to measure electrical signals in cell membranes, however, progress in the field of neurobiology has been stymied by the fact that most axons in the mammalian CNS are far too small and delicate for measuring ion channel function with electrodes. These quantitative measurements of membrane voltage can be achieved within the axon using light. A revolution of optical voltage sensors has enabled exploring important questions of how ion channels regulate axon physiology and synaptic transmission. In this review we will consider advantages and disadvantages of different fluorescent voltage indicators and discuss particularly relevant questions that these indicators can elucidate for understanding the crucial relationship between action potentials and synaptic transmission.

7.
J Neurosci ; 37(39): 9519-9533, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28871036

RESUMEN

Neurotransmitter release depends on voltage-gated Na+ channels (Navs) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na+ channels. Using optical recordings of Ca2+ and membrane voltage, we demonstrate here that Na+ channel ß2 subunits (Navß2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Navß2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Navß2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons.SIGNIFICANCE STATEMENT Voltage-gated Ca2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na+ channel ß2 subunits modulate AP-evoked Ca2+-influx, and (3) ß2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain.


Asunto(s)
Potenciales de Acción , Axones/metabolismo , Subunidad beta-2 de Canal de Sodio Activado por Voltaje/metabolismo , Animales , Axones/fisiología , Región CA1 Hipocampal/citología , Señalización del Calcio , Línea Celular , Células Cultivadas , Femenino , Masculino , Potenciales de la Membrana , Ratas , Ratas Sprague-Dawley , Potenciales Sinápticos
8.
Proc Natl Acad Sci U S A ; 113(44): E6823-E6830, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27791141

RESUMEN

In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the "maternal age effect." During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.


Asunto(s)
Segregación Cromosómica/fisiología , Meiosis/fisiología , Oocitos/metabolismo , Estrés Oxidativo/fisiología , Aneuploidia , Animales , Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/metabolismo , Proteínas de Ciclo Celular/genética , Senescencia Celular/fisiología , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/efectos de los fármacos , Intercambio Genético , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Depuradores de Radicales Libres , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Masculino , Edad Materna , Meiosis/efectos de los fármacos , Modelos Animales , No Disyunción Genética , Oocitos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Interferencia de ARN , Especies Reactivas de Oxígeno/efectos adversos , Recombinación Genética/genética , Intercambio de Cromátides Hermanas/genética , Superóxido Dismutasa/genética , Superóxido Dismutasa-1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA