Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
bioRxiv ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38712237

RESUMEN

The principle of efficient coding posits that sensory cortical networks are designed to encode maximal sensory information with minimal metabolic cost. Despite the major influence of efficient coding in neuroscience, it has remained unclear whether fundamental empirical properties of neural network activity can be explained solely based on this normative principle. Here, we rigorously derive the structural, coding, biophysical and dynamical properties of excitatory-inhibitory recurrent networks of spiking neurons that emerge directly from imposing that the network minimizes an instantaneous loss function and a time-averaged performance measure enacting efficient coding. The optimal network has biologically-plausible biophysical features, including realistic integrate-and-fire spiking dynamics, spike-triggered adaptation, and a non-stimulus-specific excitatory external input regulating metabolic cost. The efficient network has excitatory-inhibitory recurrent connectivity between neurons with similar stimulus tuning implementing feature-specific competition, similar to that recently found in visual cortex. Networks with unstructured connectivity cannot reach comparable levels of coding efficiency. The optimal biophysical parameters include 4 to 1 ratio of excitatory vs inhibitory neurons and 3 to 1 ratio of mean inhibitory-to-inhibitory vs. excitatory-to-inhibitory connectivity that closely match those of cortical sensory networks. The efficient network has biologically-plausible spiking dynamics, with a tight instantaneous E-I balance that makes them capable to achieve efficient coding of external stimuli varying over multiple time scales. Together, these results explain how efficient coding may be implemented in cortical networks and suggests that key properties of biological neural networks may be accounted for by efficient coding.

2.
Nat Hum Behav ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769463

RESUMEN

At the core of what defines us as humans is the concept of theory of mind: the ability to track other people's mental states. The recent development of large language models (LLMs) such as ChatGPT has led to intense debate about the possibility that these models exhibit behaviour that is indistinguishable from human behaviour in theory of mind tasks. Here we compare human and LLM performance on a comprehensive battery of measurements that aim to measure different theory of mind abilities, from understanding false beliefs to interpreting indirect requests and recognizing irony and faux pas. We tested two families of LLMs (GPT and LLaMA2) repeatedly against these measures and compared their performance with those from a sample of 1,907 human participants. Across the battery of theory of mind tests, we found that GPT-4 models performed at, or even sometimes above, human levels at identifying indirect requests, false beliefs and misdirection, but struggled with detecting faux pas. Faux pas, however, was the only test where LLaMA2 outperformed humans. Follow-up manipulations of the belief likelihood revealed that the superiority of LLaMA2 was illusory, possibly reflecting a bias towards attributing ignorance. By contrast, the poor performance of GPT originated from a hyperconservative approach towards committing to conclusions rather than from a genuine failure of inference. These findings not only demonstrate that LLMs exhibit behaviour that is consistent with the outputs of mentalistic inference in humans but also highlight the importance of systematic testing to ensure a non-superficial comparison between human and artificial intelligences.

3.
Curr Biol ; 34(9): 1831-1843.e7, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38604168

RESUMEN

The coordination of neural activity across brain areas during a specific behavior is often interpreted as neural communication involved in controlling the behavior. However, whether information relevant to the behavior is actually transferred between areas is often untested. Here, we used information-theoretic tools to quantify how motor cortex and striatum encode and exchange behaviorally relevant information about specific reach-to-grasp movement features during skill learning in rats. We found a temporal shift in the encoding of behaviorally relevant information during skill learning, as well as a reversal in the primary direction of behaviorally relevant information flow, from cortex-to-striatum during naive movements to striatum-to-cortex during skilled movements. Standard analytical methods that quantify the evolution of overall neural activity during learning-such as changes in neural signal amplitude or the overall exchange of information between areas-failed to capture these behaviorally relevant information dynamics. Using these standard methods, we instead found a consistent coactivation of overall neural signals during movement production and a bidirectional increase in overall information propagation between areas during learning. Our results show that skill learning is achieved through a transformation in how behaviorally relevant information is routed across cortical and subcortical brain areas and that isolating the components of neural activity relevant to and informative about behavior is critical to uncover directional interactions within a coactive and coordinated network.


Asunto(s)
Cuerpo Estriado , Aprendizaje , Corteza Motora , Destreza Motora , Ratas Long-Evans , Animales , Corteza Motora/fisiología , Aprendizaje/fisiología , Ratas , Cuerpo Estriado/fisiología , Masculino , Destreza Motora/fisiología
4.
Nature ; 627(8003): 367-373, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383788

RESUMEN

The posterior parietal cortex exhibits choice-selective activity during perceptual decision-making tasks1-10. However, it is not known how this selective activity arises from the underlying synaptic connectivity. Here we combined virtual-reality behaviour, two-photon calcium imaging, high-throughput electron microscopy and circuit modelling to analyse how synaptic connectivity between neurons in the posterior parietal cortex relates to their selective activity. We found that excitatory pyramidal neurons preferentially target inhibitory interneurons with the same selectivity. In turn, inhibitory interneurons preferentially target pyramidal neurons with opposite selectivity, forming an opponent inhibition motif. This motif was present even between neurons with activity peaks in different task epochs. We developed neural-circuit models of the computations performed by these motifs, and found that opponent inhibition between neural populations with opposite selectivity amplifies selective inputs, thereby improving the encoding of trial-type information. The models also predict that opponent inhibition between neurons with activity peaks in different task epochs contributes to creating choice-specific sequential activity. These results provide evidence for how synaptic connectivity in cortical circuits supports a learned decision-making task.


Asunto(s)
Toma de Decisiones , Vías Nerviosas , Lóbulo Parietal , Sinapsis , Calcio/análisis , Calcio/metabolismo , Toma de Decisiones/fisiología , Interneuronas/metabolismo , Interneuronas/ultraestructura , Aprendizaje/fisiología , Microscopía Electrónica , Inhibición Neural , Vías Nerviosas/fisiología , Vías Nerviosas/ultraestructura , Lóbulo Parietal/citología , Lóbulo Parietal/fisiología , Lóbulo Parietal/ultraestructura , Células Piramidales/metabolismo , Células Piramidales/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Realidad Virtual , Modelos Neurológicos
5.
Phys Life Rev ; 48: 164-166, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237428
6.
Schizophrenia (Heidelb) ; 10(1): 8, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200038

RESUMEN

Aberrant motor-sensory predictive functions have been linked to symptoms of psychosis, particularly reduced attenuation of self-generated sensations and misattribution of self-generated actions. Building on the parallels between prediction of self- and other-generated actions, this study aims to investigate whether individuals with psychosis also demonstrate abnormal perceptions and predictions of others' actions. Patients with psychosis and matched controls completed a two-alternative object size discrimination task. In each trial, they observed reaching actions towards a small and a large object, with varying levels of temporal occlusion ranging from 10% to 80% of movement duration. Their task was to predict the size of the object that would be grasped. We employed a novel analytic approach to examine how object size information was encoded and read out across progressive levels of occlusion with single-trial resolution. Patients with psychosis exhibited an overall pattern of reduced and discontinuous evidence integration relative to controls, characterized by a period of null integration up to 20% of movement duration, during which they did not read any size information. Surprisingly, this drop in accuracy in the initial integration period was not accompanied by a reduction in confidence. Difficulties in action prediction were correlated with the severity of negative symptoms and impaired functioning in social relationships.

7.
Brain Inform ; 10(1): 34, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052917

RESUMEN

Measures of functional connectivity have played a central role in advancing our understanding of how information is transmitted and processed within the brain. Traditionally, these studies have focused on identifying redundant functional connectivity, which involves determining when activity is similar across different sites or neurons. However, recent research has highlighted the importance of also identifying synergistic connectivity-that is, connectivity that gives rise to information not contained in either site or neuron alone. Here, we measured redundant and synergistic functional connectivity between neurons in the mouse primary auditory cortex during a sound discrimination task. Specifically, we measured directed functional connectivity between neurons simultaneously recorded with calcium imaging. We used Granger Causality as a functional connectivity measure. We then used Partial Information Decomposition to quantify the amount of redundant and synergistic information about the presented sound that is carried by functionally connected or functionally unconnected pairs of neurons. We found that functionally connected pairs present proportionally more redundant information and proportionally less synergistic information about sound than unconnected pairs, suggesting that their functional connectivity is primarily redundant. Further, synergy and redundancy coexisted both when mice made correct or incorrect perceptual discriminations. However, redundancy was much higher (both in absolute terms and in proportion to the total information available in neuron pairs) in correct behavioural choices compared to incorrect ones, whereas synergy was higher in absolute terms but lower in relative terms in correct than in incorrect behavioural choices. Moreover, the proportion of redundancy reliably predicted perceptual discriminations, with the proportion of synergy adding no extra predictive power. These results suggest a crucial contribution of redundancy to correct perceptual discriminations, possibly due to the advantage it offers for information propagation, and also suggest a role of synergy in enhancing information level during correct discriminations.

8.
bioRxiv ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37662297

RESUMEN

Do cortical neurons that send axonal projections to the same target area form specialized population codes for transmitting information? We used calcium imaging in mouse posterior parietal cortex (PPC), retrograde labeling, and statistical multivariate models to address this question during a delayed match-to-sample task. We found that PPC broadcasts sensory, choice, and locomotion signals widely, but sensory information is enriched in the output to anterior cingulate cortex. Neurons projecting to the same area have elevated pairwise activity correlations. These correlations are structured as information-limiting and information-enhancing interaction networks that collectively enhance information levels. This network structure is unique to sub-populations projecting to the same target and strikingly absent in surrounding neural populations with unidentified projections. Furthermore, this structure is only present when mice make correct, but not incorrect, behavioral choices. Therefore, cortical neurons comprising an output pathway form uniquely structured population codes that enhance information transmission to guide accurate behavior.

9.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398375

RESUMEN

Quantifying the amount, content and direction of communication between brain regions is key to understanding brain function. Traditional methods to analyze brain activity based on the Wiener-Granger causality principle quantify the overall information propagated by neural activity between simultaneously recorded brain regions, but do not reveal the information flow about specific features of interest (such as sensory stimuli). Here, we develop a new information theoretic measure termed Feature-specific Information Transfer (FIT), quantifying how much information about a specific feature flows between two regions. FIT merges the Wiener-Granger causality principle with information-content specificity. We first derive FIT and prove analytically its key properties. We then illustrate and test them with simulations of neural activity, demonstrating that FIT identifies, within the total information flowing between regions, the information that is transmitted about specific features. We then analyze three neural datasets obtained with different recording methods, magneto- and electro-encephalography, and spiking activity, to demonstrate the ability of FIT to uncover the content and direction of information flow between brain regions beyond what can be discerned with traditional anaytical methods. FIT can improve our understanding of how brain regions communicate by uncovering previously hidden feature-specific information flow.

10.
Curr Biol ; 33(13): 2717-2727.e6, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37339628

RESUMEN

The ability to anticipate what others will do next is crucial for navigating social, interactive environments. Here, we develop an experimental and analytical framework to measure the implicit readout of prospective intention information from movement kinematics. Using a primed action categorization task, we first demonstrate implicit access to intention information by establishing a novel form of priming, which we term kinematic priming: subtle differences in movement kinematics prime action prediction. Next, using data collected from the same participants in a forced-choice intention discrimination task 1 h later, we quantify single-trial intention readout-the amount of intention information read by individual perceivers in individual kinematic primes-and assess whether it can be used to predict the amount of kinematic priming. We demonstrate that the amount of kinematic priming, as indexed by both response times (RTs) and initial fixations to a given probe, is directly proportional to the amount of intention information read by the individual perceiver at the single-trial level. These results demonstrate that human perceivers have rapid, implicit access to intention information encoded in movement kinematics and highlight the potential of our approach to reveal the computations that permit the readout of this information with single-subject, single-trial resolution.


Asunto(s)
Intención , Movimiento , Humanos , Fenómenos Biomecánicos , Estudios Prospectivos , Tiempo de Reacción
11.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205519

RESUMEN

Changes in the intracellular calcium concentration are a fundamental fingerprint of astrocytes, the main type of glial cell. Astrocyte calcium signals can be measured with two-photon microscopy, occur in anatomically restricted subcellular regions, and are coordinated across astrocytic networks. However, current analytical tools to identify the astrocytic subcellular regions where calcium signals occur are time-consuming and extensively rely on user-defined parameters. These limitations limit reproducibility and prevent scalability to large datasets and fields-of-view. Here, we present Astrocytic calcium Spatio-Temporal Rapid Analysis (ASTRA), a novel software combining deep learning with image feature engineering for fast and fully automated semantic segmentation of two-photon calcium imaging recordings of astrocytes. We applied ASTRA to several two-photon microscopy datasets and found that ASTRA performed rapid detection and segmentation of astrocytic cell somata and processes with performance close to that of human experts, outperformed state-of-the-art algorithms for the analysis of astrocytic and neuronal calcium data, and generalized across indicators and acquisition parameters. We also applied ASTRA to the first report of two-photon mesoscopic imaging of hundreds of astrocytes in awake mice, documenting large-scale redundant and synergistic interactions in extended astrocytic networks. ASTRA is a powerful tool enabling closed-loop and large-scale reproducible investigation of astrocytic morphology and function.

12.
Nat Commun ; 14(1): 2121, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37055431

RESUMEN

Decision-making requires flexibility to rapidly switch one's actions in response to sensory stimuli depending on information stored in memory. We identified cortical areas and neural activity patterns underlying this flexibility during virtual navigation, where mice switched navigation toward or away from a visual cue depending on its match to a remembered cue. Optogenetics screening identified V1, posterior parietal cortex (PPC), and retrosplenial cortex (RSC) as necessary for accurate decisions. Calcium imaging revealed neurons that can mediate rapid navigation switches by encoding a mixture of a current and remembered visual cue. These mixed selectivity neurons emerged through task learning and predicted the mouse's choices by forming efficient population codes before correct, but not incorrect, choices. They were distributed across posterior cortex, even V1, and were densest in RSC and sparsest in PPC. We propose flexibility in navigation decisions arises from neurons that mix visual and memory information within a visual-parietal-retrosplenial network.


Asunto(s)
Aprendizaje , Lóbulo Parietal , Ratones , Animales , Lóbulo Parietal/fisiología , Neuronas/fisiología , Giro del Cíngulo
13.
Comput Struct Biotechnol J ; 21: 910-922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36698970

RESUMEN

The brain is an information processing machine and thus naturally lends itself to be studied using computational tools based on the principles of information theory. For this reason, computational methods based on or inspired by information theory have been a cornerstone of practical and conceptual progress in neuroscience. In this Review, we address how concepts and computational tools related to information theory are spurring the development of principled theories of information processing in neural circuits and the development of influential mathematical methods for the analyses of neural population recordings. We review how these computational approaches reveal mechanisms of essential functions performed by neural circuits. These functions include efficiently encoding sensory information and facilitating the transmission of information to downstream brain areas to inform and guide behavior. Finally, we discuss how further progress and insights can be achieved, in particular by studying how competing requirements of neural encoding and readout may be optimally traded off to optimize neural information processing.

14.
PLoS Comput Biol ; 18(12): e1010763, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477028

RESUMEN

Sensory information is conveyed by populations of neurons, and coding strategies cannot always be deduced when considering individual neurons. Moreover, information coding depends on the number of neurons available and on the composition of the population when multiple classes with different response properties are available. Here, we study population coding in human tactile afferents by employing a recently developed simulator of mechanoreceptor firing activity. First, we highlight the interplay of afferents within each class. We demonstrate that the optimal afferent density to convey maximal information depends on both the tactile feature under consideration and the afferent class. Second, we find that information is spread across different classes for all tactile features and that each class encodes both redundant and complementary information with respect to the other afferent classes. Specifically, combining information from multiple afferent classes improves information transmission and is often more efficient than increasing the density of afferents from the same class. Finally, we examine the importance of temporal and spatial contributions, respectively, to the joint spatiotemporal code. On average, destroying temporal information is more destructive than removing spatial information, but the importance of either depends on the stimulus feature analyzed. Overall, our results suggest that both optimal afferent innervation densities and the composition of the population depend in complex ways on the tactile features in question, potentially accounting for the variety in which tactile peripheral populations are assembled in different regions across the body.


Asunto(s)
Mecanorreceptores , Tacto , Humanos , Potenciales de Acción/fisiología , Tacto/fisiología , Mecanorreceptores/fisiología , Neuronas , Neuronas Aferentes/fisiología
15.
Brain Inform ; 9(1): 28, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36480076

RESUMEN

How to capture the temporal evolution of synaptic weights from measures of dynamic functional connectivity between the activity of different simultaneously recorded neurons is an important and open problem in systems neuroscience. Here, we report methodological progress to address this issue. We first simulated recurrent neural network models of spiking neurons with spike timing-dependent plasticity mechanisms that generate time-varying synaptic and functional coupling. We then used these simulations to test analytical approaches that infer fixed and time-varying properties of synaptic connectivity from directed functional connectivity measures, such as cross-covariance and transfer entropy. We found that, while both cross-covariance and transfer entropy provide robust estimates of which synapses are present in the network and their communication delays, dynamic functional connectivity measured via cross-covariance better captures the evolution of synaptic weights over time. We also established how measures of information transmission delays from static functional connectivity computed over long recording periods (i.e., several hours) can improve shorter time-scale estimates of the temporal evolution of synaptic weights from dynamic functional connectivity. These results provide useful information about how to accurately estimate the temporal variation of synaptic strength from spiking activity measures.

16.
iScience ; 25(12): 105550, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36444302

RESUMEN

Decisions, including social decisions, are ultimately expressed through actions. However, very little is known about the kinematics of social decisions, and whether movements might reveal important aspects of social decision-making. We addressed this question by developing a motor version of a widely used behavioral economic game - the Ultimatum Game - and using a multivariate kinematic decoding approach to map parameters of social decisions to the single-trial kinematics of individual responders. Using this approach, we demonstrated that movement contains predictive information about both the fairness of a proposed offer and the choice to either accept or reject that offer. This information is expressed in personalized kinematic patterns that are consistent within a given responder, but that varies from one responder to another. These results provide insights into the relationship between decision-making and sensorimotor control, as they suggest that hand kinematics can reveal hidden parameters of complex, social interactive, choice.

17.
Curr Biol ; 32(18): R941-R943, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36167039

RESUMEN

Integrating sensory and postural information is essential for perception and behavior. A new study shows that information about whether mice are looking up or down is combined with visual information in the primary visual thalamus, an early sensory stage of visual processing.


Asunto(s)
Tálamo , Percepción Visual , Animales , Ratones
18.
Brain Inform ; 9(1): 18, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35927517

RESUMEN

Two-photon fluorescence calcium imaging allows recording the activity of large neural populations with subcellular spatial resolution, but it is typically characterized by low signal-to-noise ratio (SNR) and poor accuracy in detecting single or few action potentials when large number of neurons are imaged. We recently showed that implementing a smart line scanning approach using trajectories that optimally sample the regions of interest increases both the SNR fluorescence signals and the accuracy of single spike detection in population imaging in vivo. However, smart line scanning requires highly specialised software to design recording trajectories, interface with acquisition hardware, and efficiently process acquired data. Furthermore, smart line scanning needs optimized strategies to cope with movement artefacts and neuropil contamination. Here, we develop and validate SmaRT2P, an open-source, user-friendly and easy-to-interface Matlab-based software environment to perform optimized smart line scanning in two-photon calcium imaging experiments. SmaRT2P is designed to interface with popular acquisition software (e.g., ScanImage) and implements novel strategies to detect motion artefacts, estimate neuropil contamination, and minimize their impact on functional signals extracted from neuronal population imaging. SmaRT2P is structured in a modular way to allow flexibility in the processing pipeline, requiring minimal user intervention in parameter setting. The use of SmaRT2P for smart line scanning has the potential to facilitate the functional investigation of large neuronal populations with increased SNR and accuracy in detecting the discharge of single and few action potentials.

19.
eNeuro ; 9(4)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35896390

RESUMEN

Recent studies using intracellular recordings in awake behaving mice revealed that cortical network states, defined based on membrane potential features, modulate sensory responses and perceptual outcomes. Single-cell intracellular recordings are difficult and have low yield compared to extracellular recordings of population signals, such as local field potentials (LFPs). However, it is currently unclear how to identify these behaviorally-relevant network states from the LFP. We used simultaneous LFP and intracellular recordings in the somatosensory cortex of awake mice to design a network state classification from the LFP, the Network State Index (NSI). We used the NSI to analyze the relationship between single-cell (intracellular) and population (LFP) signals over different network states of wakefulness. We found that graded levels of population signal faithfully predicted the levels of single-cell depolarization in nonrhythmic regimes whereas, in δ ([2-4 Hz]) oscillatory regimes, the graded levels of rhythmicity in the LFP mapped into a stereotypical oscillatory pattern of membrane potential. Finally, we showed that the variability of network states, beyond the occurrence of slow oscillatory activity, critically shaped the average correlations between single-cell and population signals. Application of the LFP-based NSI to mouse visual cortex data showed that this index increased with pupil size and during locomotion and had a U-shaped dependence on population firing rates. NSI-based characterization provides a ready-to-use tool to understand from LFP recordings how the modulation of local network dynamics shapes the flexibility of sensory processing during behavior.


Asunto(s)
Neocórtex , Corteza Visual , Potenciales de Acción/fisiología , Animales , Potenciales de la Membrana/fisiología , Ratones , Neuronas/fisiología , Corteza Visual/fisiología , Vigilia/fisiología
20.
Nat Rev Neurosci ; 23(9): 551-567, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35732917

RESUMEN

The collective activity of a population of neurons, beyond the properties of individual cells, is crucial for many brain functions. A fundamental question is how activity correlations between neurons affect how neural populations process information. Over the past 30 years, major progress has been made on how the levels and structures of correlations shape the encoding of information in population codes. Correlations influence population coding through the organization of pairwise-activity correlations with respect to the similarity of tuning of individual neurons, by their stimulus modulation and by the presence of higher-order correlations. Recent work has shown that correlations also profoundly shape other important functions performed by neural populations, including generating codes across multiple timescales and facilitating information transmission to, and readout by, downstream brain areas to guide behaviour. Here, we review this recent work and discuss how the structures of correlations can have opposite effects on the different functions of neural populations, thus creating trade-offs and constraints for the structure-function relationships of population codes. Further, we present ideas on how to combine large-scale simultaneous recordings of neural populations, computational models, analyses of behaviour, optogenetics and anatomy to unravel how the structures of correlations might be optimized to serve multiple functions.


Asunto(s)
Modelos Neurológicos , Neuronas , Potenciales de Acción/fisiología , Encéfalo/fisiología , Humanos , Neuronas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...