Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cancer Discov ; 11(5): 1118-1137, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33431496

RESUMEN

Resistance to androgen receptor (AR) blockade in castration-resistant prostate cancer (CRPC) is associated with sustained AR signaling, including through alternative splicing of AR (AR-SV). Inhibitors of transcriptional coactivators that regulate AR activity, including the paralog histone acetyltransferase proteins p300 and CBP, are attractive therapeutic targets for lethal prostate cancer. Herein, we validate targeting p300/CBP as a therapeutic strategy for lethal prostate cancer and describe CCS1477, a novel small-molecule inhibitor of the p300/CBP conserved bromodomain. We show that CCS1477 inhibits cell proliferation in prostate cancer cell lines and decreases AR- and C-MYC-regulated gene expression. In AR-SV-driven models, CCS1477 has antitumor activity, regulating AR and C-MYC signaling. Early clinical studies suggest that CCS1477 modulates KLK3 blood levels and regulates CRPC biopsy biomarker expression. Overall, CCS1477 shows promise for the treatment of patients with advanced prostate cancer. SIGNIFICANCE: Treating CRPC remains challenging due to persistent AR signaling. Inhibiting transcriptional AR coactivators is an attractive therapeutic strategy. CCS1477, an inhibitor of p300/CBP, inhibits growth and AR activity in CRPC models, and can affect metastatic CRPC target expression in serial clinical biopsies.See related commentary by Rasool et al., p. 1011.This article is highlighted in the In This Issue feature, p. 995.


Asunto(s)
Antagonistas de Receptores Androgénicos/uso terapéutico , Imidazoles/uso terapéutico , Oxazoles/uso terapéutico , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Factores de Transcripción p300-CBP/antagonistas & inhibidores , Antagonistas de Receptores Androgénicos/farmacología , Animales , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Humanos , Imidazoles/farmacología , Masculino , Ratones , Oxazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Medchemcomm ; 10(7): 1094-1108, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31391881

RESUMEN

A series of adenosine receptor antagonists bearing a reactive linker was developed. Functionalization of these derivatives is useful to easily obtain multi-target ligands, receptor probes, drug delivery systems, and diagnostic or theranostic systems. The pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine scaffold was chosen as a pharmacophore for the adenosine receptors. It was substituted at the 5 position with reactive linkers of different lengths. Then, these compounds were used to synthesise probes for the adenosine receptors by functionalization with a fluorescent moiety. Both series of compounds were evaluated for their binding at the four adenosine receptor subtypes. Different affinity and selectivity profiles were observed towards hA1, hA2A and hA3 adenosine receptors. In particular, fluorescent compounds behave as dual hA2A/hA3 ligands. Computational studies suggested different binding modes for developed compounds at the three receptors. Both molecular docking and supervised molecular dynamics (SuMD) simulations confirmed that the preferred binding mode at the single receptor was driven by the substitution present at the 5 position. Obtained results rationalized the compounds' binding profile at the adenosine receptors and pave the way for the development of more potent conjugable and conjugated ligands targeting these membrane receptors.

3.
Purinergic Signal ; 14(1): 59-71, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29170977

RESUMEN

Activity of the A3 adenosine receptor (AR) allosteric modulators LUF6000 (2-cyclohexyl-N-(3,4-dichlorophenyl)-1H-imidazo [4,5-c]quinolin-4-amine) and LUF6096 (N-{2-[(3,4-dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarbox-amide) was compared at four A3AR species homologs used in preclinical drug development. In guanosine 5'-[γ-[35S]thio]triphosphate ([35S]GTPγS) binding assays with cell membranes isolated from human embryonic kidney cells stably expressing recombinant A3ARs, both modulators substantially enhanced agonist efficacy at human, dog, and rabbit A3ARs but provided only weak activity at mouse A3ARs. For human, dog, and rabbit, both modulators increased the maximal efficacy of the A3AR agonist 2-chloro-N 6-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide as well as adenosine > 2-fold, while slightly reducing potency in human and dog. Based on results from N 6-(4-amino-3-[125I]iodobenzyl)adenosine-5'-N-methylcarboxamide ([125I]I-AB-MECA) binding assays, we hypothesize that potency reduction is explained by an allosterically induced slowing in orthosteric ligand binding kinetics that reduces the rate of formation of ligand-receptor complexes. Mutation of four amino acid residues of the human A3AR to the murine sequence identified the extracellular loop 1 (EL1) region as being important in selectively controlling the allosteric actions of LUF6096 on [125I]I-AB-MECA binding kinetics. Homology modeling suggested interaction between species-variable EL1 and agonist-contacting EL2. These results indicate that A3AR allostery is species-dependent and provide mechanistic insights into this therapeutically promising class of agents.


Asunto(s)
Agonistas del Receptor de Adenosina A3/química , Agonistas del Receptor de Adenosina A3/farmacología , Receptor de Adenosina A3/efectos de los fármacos , Receptor de Adenosina A3/metabolismo , Aminoquinolinas/química , Aminoquinolinas/farmacología , Animales , Perros , Humanos , Imidazoles/química , Imidazoles/farmacología , Ratones , Simulación del Acoplamiento Molecular , Conejos , Especificidad de la Especie
4.
J Chem Inf Model ; 57(12): 3104-3123, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29182323

RESUMEN

We performed a molecular modeling analysis of 100 nucleotide-like bisphosphates and 46 non-nucleotide arylurea derivatives previously reported as P2Y1R binders using the recently solved hP2Y1R structures. We initially docked the compounds at the X-ray structures and identified the binding modes of representative compounds highlighting key patterns in the structure-activity relationship (SAR). We subsequently subjected receptor complexes with selected key agonists (2MeSADP and MRS2268) and antagonists (MRS2500 and BPTU) to membrane molecular dynamics (MD) simulations (at least 200 ns run in triplicate, simulation time 0.6-1.6 µs per ligand system) while considering alternative protonation states of nucleotides. Comparing the temporal evolution of the ligand-protein interaction patterns with available site-directed mutagenesis (SDM) data and P2Y1R apo state simulation provided further SAR insights and suggested reasonable explanations for loss/gain of binding affinity as well as the most relevant charged species for nucleotide ligands. The MD analysis also predicted local conformational changes required for the receptor inactive state to accommodate nucleotide agonists.


Asunto(s)
Agonistas del Receptor Purinérgico P2Y/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y1/metabolismo , Descubrimiento de Drogas , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Agonistas del Receptor Purinérgico P2Y/química , Antagonistas del Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y1/química , Relación Estructura-Actividad
5.
Hamostaseologie ; 36(4): 279-283, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27487748

RESUMEN

The platelet adenosine 5'-diphosphate (ADP) receptor P2Y12 (P2Y12R) plays a critical role in platelet aggregation. The present report illustrates an update of dysfunctional platelet P2Y12R mutations diagnosed with congenital lifelong bleeding problems. Described patients with heterozygous or homozygous substitution in the P2Y12R gene and qualitative abnormalities of the platelet P2Y12R are summarized. Recently, a further dysfunctional variant of P2Y12R has been identified in two brothers who presented with a lifelong severe bleeding disorder. During in vitro aggregation studies, the patient´s platelets show a markedly reduced and rapid reversible ADP-promoted aggregation. A homozygous c.561T>A substitution that changes the codon for His187 to Gln (p.His187Gln) in the P2Y12R gene has been identified. This mutation causes no change in receptor expression but decreases the affinity of the ligand for the receptor, even at high concentrations. Structure modelling studies indicated that the p.His187Gln mutation, located in the fifth transmembrane spanning domain (TM5), impairs conformational changes of the receptor. Structural integrity of the TM5 region is necessary for agonist and antagonist binding and for correct receptor function.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/inmunología , Hemorragia/genética , Hemorragia/inmunología , Polimorfismo de Nucleótido Simple/genética , Receptores Purinérgicos P2Y12/genética , Trastornos de las Plaquetas Sanguíneas/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Modelos Genéticos , Modelos Inmunológicos , Mutación/genética
6.
Mol Pharmacol ; 90(1): 12-22, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27136943

RESUMEN

Biased agonism at G protein-coupled receptors (GPCRs) has significant implications for current drug discovery, but molecular determinants that govern ligand bias remain largely unknown. The adenosine A3 GPCR (A3AR) is a potential therapeutic target for various conditions, including cancer, inflammation, and ischemia, but for which biased agonism remains largely unexplored. We now report the generation of bias "fingerprints" for prototypical ribose containing A3AR agonists and rigidified (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with regard to their ability to mediate different signaling pathways. Relative to the reference prototypical agonist IB-MECA, (N)-methanocarba 5'-N-methyluronamide nucleoside derivatives with significant N(6) or C2 modifications, including elongated aryl-ethynyl groups, exhibited biased agonism. Significant positive correlation was observed between the C2 substituent length (in Å) and bias toward cell survival. Molecular modeling suggests that extended C2 substituents on (N)-methanocarba 5'-N-methyluronamide nucleosides promote a progressive outward shift of the A3AR transmembrane domain 2, which may contribute to the subset of A3AR conformations stabilized on biased agonist binding.


Asunto(s)
Agonistas del Receptor de Adenosina A3/química , Agonistas del Receptor de Adenosina A3/farmacología , Receptor de Adenosina A3/química , Receptor de Adenosina A3/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
7.
Medchemcomm ; 6: 555-563, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236460

RESUMEN

2-Arylethynyl derivatives of (N)-methanocarba adenosine 5'-uronamides are selective A3AR (adenosine receptor) agonists. Here we substitute a 1,2,3-triazol-1-yl linker in place of the rigid, linear ethynyl group to eliminate its potential metabolic liability. Docking of nucleosides containing possible short linker moieties at the adenine C2 position using a hybrid molecular model of the A3AR (based on the A2AAR agonist-bound structure) correctly predicted that a triazole would maintain the A3AR selectivity, due to its ability to fit a narrow cleft in the receptor. The analogues with various N6 and C2-aryltriazolyl substitution were synthesized and characterized in binding (Ki at hA3AR 0.3 - 12 nM) and in vivo to demonstrate efficacy in controlling chronic neuropathic pain (chronic constriction injury). Among N6-methyl derivatives, a terminal pyrimidin-2-yl group in 9 (MRS7116) increased duration of action (36% pain protection at 3 h) in vivo. N6-Ethyl 5-chlorothien-2-yl analogue 15 (MRS7126) preserved in vivo efficacy (85% protection at 1 h) with short duration. Larger N6 groups, e.g. 17 (MRS7138, >90% protection at 1 and 3 h), greatly enhanced in vivo activity. Thus, we have combined structure-based methods and phenotypic screening to identify nucleoside derivatives having translational potential.

8.
ACS Med Chem Lett ; 6(7): 804-8, 2015 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-26191370

RESUMEN

Substitution of rigidified A3 adenosine receptor (AR) agonists with a 2-((5-chlorothiophen-2-yl)ethynyl) or a 2-(4-(5-chlorothiophen-2-yl)-1H-1,2,3-triazol-1-yl) group provides prolonged protection in a model of chronic neuropathic pain. These agonists contain a bicyclo[3.1.0]hexane ((N)-methanocarba) ring system in place of ribose, which adopts a receptor-preferred conformation. N (6)-Small alkyl derivatives were newly optimized for A3AR affinity and the effects of a 1-deaza-adenine modification probed. 1-Deaza-N (6)-ethyl alkyne 20 (MRS7144, K i 1.7 nM) and 1-aza N (6)-propyl alkyne 12 (MRS7154, K i 1.1 nM) were highly efficacious in vivo. Thus, the presence of N1 is not required for nanomolar binding affinity or potent, long-lasting functional activity. Docking of 1-deaza compounds to a receptor homology model confirmed a similar binding mode as previously reported 1-aza derivatives. This is the first demonstration in nonribose adenosine analogues that the 1-deaza modification can maintain high A3AR affinity, selectivity, and efficacy.

9.
J Comput Aided Mol Des ; 29(8): 737-56, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26194851

RESUMEN

The G protein-coupled P2Y12 receptor (P2Y12R) is an important antithrombotic target and of great interest for pharmaceutical discovery. Its recently solved, highly divergent crystallographic structures in complex either with nucleotides (full or partial agonist) or with a nonnucleotide antagonist raise the question of which structure is more useful to understand ligand recognition. Therefore, we performed extensive molecular modeling studies based on these structures and mutagenesis, to predict the binding modes of major classes of P2Y12R ligands previously reported. Various nucleotide derivatives docked readily to the agonist-bound P2Y12R, but uncharged nucleotide-like antagonist ticagrelor required a hybrid receptor resembling the agonist-bound P2Y12R except for the top portion of TM6. Supervised molecular dynamics (SuMD) of ticagrelor binding indicated interactions with the extracellular regions of P2Y12R, defining possible meta-binding sites. Ureas, sulfonylureas, sulfonamides, anthraquinones and glutamic acid piperazines docked readily to the antagonist-bound P2Y12R. Docking dinucleotides at both agonist- and antagonist-bound structures suggested interactions with two P2Y12R pockets. Thus, our structure-based approach consistently rationalized the main structure-activity relationships within each ligand class, giving useful information for designing improved ligands.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Agonistas del Receptor Purinérgico P2Y/química , Antagonistas del Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Cristalografía por Rayos X , Humanos , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Nucleótidos/química , Nucleótidos/metabolismo , Conformación Proteica , Agonistas del Receptor Purinérgico P2Y/metabolismo , Antagonistas del Receptor Purinérgico P2Y/metabolismo , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/metabolismo
10.
Comput Struct Biotechnol J ; 13: 286-98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25973142

RESUMEN

We establish structure activity relationships of extracellular nucleosides and nucleotides at G protein-coupled receptors (GPCRs), e.g. adenosine receptors (ARs) and P2Y receptors (P2YRs), respectively. We synthesize selective agents for use as pharmacological probes and potential therapeutic agents (e.g. A3AR agonists for neuropathic pain). Detailed structural information derived from the X-ray crystallographic structures within these families enables the design of novel ligands, guides modification of known agonists and antagonists, and helps predict polypharmacology. Structures were recently reported for the P2Y12 receptor (P2Y12R), an anti-thrombotic target. Comparison of agonist-bound and antagonist-bound P2Y12R indicates unprecedented structural plasticity in the outer portions of the transmembrane (TM) domains and the extracellular loops. Nonphosphate-containing ligands of the P2YRs, such as the selective P2Y14R antagonist PPTN, are desired for bioavailability and increased stability. Also, A2AAR structures are effectively applied to homology modeling of closely related A1AR and A3AR, which are not yet crystallized. Conformational constraint of normally flexible ribose with bicyclic analogues increased the ligand selectivity. Comparison of rigid A3AR agonist congeners allows the exploration of interaction of specific regions of the nucleoside analogues with the target and off-target GPCRs, such as biogenic amine receptors. Molecular modeling predicts plasticity of the A3AR at TM2 to accommodate highly rigidified ligands. Novel fluorescent derivatives of high affinity GPCR ligands are useful tool compounds for characterization of receptors and their oligomeric assemblies. Fluorescent probes are useful for characterization of GPCRs in living cells by flow cytometry and other methods. Thus, 3D knowledge of receptor binding and activation facilitates drug discovery.

11.
Mol Pharmacol ; 88(2): 220-30, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25837834

RESUMEN

Eight G protein-coupled P2Y receptor (P2YR) subtypes are important physiologic mediators. The human P2YRs are fully activated by ATP (P2Y2 and P2Y11), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2 and P2Y4), UDP (P2Y6 and P2Y14), and UDP glucose (P2Y14). Their structural elucidation is progressing rapidly. The X-ray structures of three ligand complexes of the Gi-coupled P2Y12R and two of the Gq-coupled P2Y1Rs were recently determined and will be especially useful in structure-based ligand design at two P2YR subfamilies. These high-resolution structures, which display unusual binding site features, complement mutagenesis studies for probing ligand recognition and activation. The structural requirements for nucleotide agonist recognition at P2YRs are relatively permissive with respect to the length of the phosphate moiety, but less so with respect to base recognition. Nucleotide-like antagonists and partial agonists are also known for P2Y1, P2Y2, P2Y4, and P2Y12Rs. Each P2YR subtype has the ability to be activated by structurally bifunctional agonists, such as dinucleotides, typically, dinucleoside triphosphates or tetraphosphates, and nucleoside polyphosphate sugars (e.g., UDP glucose) as well as the more conventional mononucleotide agonists. A range of dinucleoside polyphosphates, from triphosphates to higher homologs, occurs naturally. Earlier modeling predictions of the P2YRs were not very accurate, but recent findings have provided much detailed structural insight into this receptor family to aid in the rational design of new drugs.


Asunto(s)
Nucleótidos/metabolismo , Agonistas del Receptor Purinérgico P2Y/metabolismo , Receptores Purinérgicos P2Y/química , Sitios de Unión , Humanos , Modelos Moleculares , Nucleótidos/química , Conformación Proteica , Agonistas del Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y/metabolismo , Relación Estructura-Actividad
12.
Bioorg Med Chem ; 23(14): 4056-64, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25868749

RESUMEN

The P2Y14 receptor (P2Y14R) is a Gi protein-coupled receptor that is activated by uracil nucleotides UDP and UDP-glucose. The P2Y14R structure has yet to be solved through X-ray crystallography, but the recent agonist-bound crystal structure of the P2Y12R provides a potentially suitable template for its homology modeling for rational structure-based design of selective and high-affinity ligands. In this study, we applied ligand docking and molecular dynamics refinement to a P2Y14R homology model to qualitatively explain structure-activity relationships of previously published synthetic nucleotide analogues and to probe the quality of P2Y14R homology modeling as a template for structure-based design. The P2Y14R model supports the hypothesis of a conserved binding mode of nucleotides in the three P2Y12-like receptors involving functionally conserved residues. We predict phosphate group interactions with R253(6.55), K277(7.35), Y256(6.58) and Q260(6.62), nucleobase (anti-conformation) π-π stacking with Y102(3.33) and the role of F191(5.42) as a means for selectivity among P2Y12-like receptors. The glucose moiety of UDP-glucose docked in a secondary subpocket at the P2Y14R homology model. Thus, P2Y14R homology modeling may allow detailed prediction of interactions to facilitate the design of high affinity, selective agonists as pharmacological tools to study the P2Y14R.


Asunto(s)
Agonistas del Receptor Purinérgico P2/farmacología , Receptores Purinérgicos P2/química , Receptores Purinérgicos P2/metabolismo , Relación Estructura-Actividad , Sitios de Unión , Diseño de Fármacos , Glucosa/química , Glucosa/metabolismo , Humanos , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfatos/química , Fosfatos/metabolismo , Agonistas del Receptor Purinérgico P2/química , Ribosa/química , Ribosa/metabolismo
13.
Nature ; 520(7547): 317-21, 2015 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-25822790

RESUMEN

In response to adenosine 5'-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7 Å resolution, and with a non-nucleotide antagonist BPTU at 2.2 Å resolution. The structures reveal two distinct ligand-binding sites, providing atomic details of P2Y1R's unique ligand-binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which is different in shape and location from the nucleotide binding site in the previously determined structure of P2Y12R, representative of another P2YR subfamily. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G-protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects.


Asunto(s)
Nucleótidos de Desoxiadenina/química , Nucleótidos de Desoxiadenina/metabolismo , Antagonistas del Receptor Purinérgico P2Y/química , Receptores Purinérgicos P2Y1/química , Receptores Purinérgicos P2Y1/metabolismo , Uracilo/análogos & derivados , Adenosina Difosfato/análogos & derivados , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Nucleótidos de Desoxiadenina/farmacología , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Antagonistas del Receptor Purinérgico P2Y/metabolismo , Antagonistas del Receptor Purinérgico P2Y/farmacología , Tionucleótidos/química , Tionucleótidos/metabolismo , Uracilo/química , Uracilo/metabolismo , Uracilo/farmacología
14.
Blood ; 125(6): 1006-13, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25428217

RESUMEN

Defects of the platelet P2Y12 receptor (P2Y12R) for adenosine diphosphate (ADP) are associated with increased bleeding risk. The study of molecular abnormalities associated with inherited qualitative defects of the P2Y12R protein is useful to unravel structure-function relationships of the receptor. We describe the case of 2 brothers, sons of first cousins, with lifelong history of abnormal bleeding, associated with dysfunctional P2Y12R and a previously undescribed missense mutation in the encoding gene. ADP (4-20 µM)-induced aggregation of patients' platelets was markedly reduced and rapidly reversible. Other agonists induced borderline-normal aggregation. Inhibition of vasodilator-stimulated phosphoprotein phosphorylation and prostaglandin E1-induced increase in cyclic adenosine monophosphate (cAMP) by ADP was impaired, whereas inhibition of cAMP increase by epinephrine was normal. [(3)H]PSB-0413, a selective P2Y12R antagonist, bound to a normal number of binding sites; however, its affinity, and that of the agonists ADP and 2-methylthio-adenosine-5'-diphosphate, was reduced. Patients' DNA showed a homozygous c.847T>A substitution that changed the codon for His-187 to Gln (p.His187Gln). Crystallographic data and molecular modeling studies indicated that His187 in transmembrane 5 is important for agonist and nucleotide antagonist binding and located in a region undergoing conformational changes. These studies delineate a region of P2Y12R required for normal function after ADP binding.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/genética , Plaquetas/patología , Trastornos Hemorrágicos/genética , Mutación Puntual , Receptores Purinérgicos P2Y12/genética , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/metabolismo , Trastornos de las Plaquetas Sanguíneas/metabolismo , Trastornos de las Plaquetas Sanguíneas/patología , Plaquetas/metabolismo , AMP Cíclico/metabolismo , Trastornos Hemorrágicos/metabolismo , Trastornos Hemorrágicos/patología , Humanos , Masculino , Persona de Mediana Edad , Simulación del Acoplamiento Molecular , Linaje , Agregación Plaquetaria , Receptores Purinérgicos P2Y12/metabolismo , Tionucleósidos/metabolismo
15.
Trends Pharmacol Sci ; 35(12): 658-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25458540

RESUMEN

Since G protein-coupled receptors (GPCRs) belong to a very large superfamily of evolutionarily related receptors (>800 members in humans), and due to the rapid progress on their structural biology, they are ideal candidates for polypharmacology studies. Broad screening and bioinformatics/chemoinformatics have been applied to understanding off-target effects of GPCR ligands. It is now feasible to approach the question of GPCR polypharmacology using molecular modeling and the available X-ray GPCR structures. As an example, large and sterically constrained adenosine derivatives (potent adenosine receptor ligands with low conformational freedom and multiple extended substituents) were screened for binding at diverse receptors. Unanticipated off-target interactions, including at biogenic amine receptors, were then modeled using a structure-based approach to provide a consistent understanding of recognition. A conserved Asp in TM3 changed its role from counterion for biogenic amines to characteristic H-bonding to adenosine. The same systematic approach could potentially be applied to many GPCRs or other receptors using other sets of congeneric ligands.


Asunto(s)
Diseño de Fármacos , Polifarmacología , Receptores Acoplados a Proteínas G/química , Biología Computacional , Cristalografía por Rayos X , Humanos , Terapia Molecular Dirigida , Receptores Acoplados a Proteínas G/metabolismo
16.
J Med Chem ; 57(23): 9901-14, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25422861

RESUMEN

(N)-Methanocarba adenosine 5'-methyluronamides containing 2-arylethynyl groups were synthesized as A3 adenosine receptor (AR) agonists and screened in vivo (po) for reduction of neuropathic pain. A small N(6)-methyl group maintained binding affinity, with human > mouse A3AR and MW < 500 and other favorable physicochemical properties. Emax (maximal efficacy in a mouse chronic constriction injury pain model) of previously characterized A3AR agonist, 2-(3,4-difluorophenylethynyl)-N(6)-(3-chlorobenzyl) derivative 6a, MRS5698, was surpassed. More efficacious analogues (in vivo) contained the following C2-arylethynyl groups: pyrazin-2-yl 23 (binding Ki, hA3AR, nM 1.8), fur-2-yl 27 (0.6), thien-2-yl 32 (0.6) and its 5-chloro 33, MRS5980 (0.7) and 5-bromo 34 (0.4) equivalents, and physiologically unstable ferrocene 36, MRS5979 (2.7). 33 and 36 displayed particularly long in vivo duration (>3 h). Selected analogues were docked to an A3AR homology model to explore the environment of receptor-bound C2 and N(6) groups. Various analogues bound with µM affinity at off-target biogenic amine (M2, 5HT2A, ß3, 5HT2B, 5HT2C, and α2C) or other receptors. Thus, we have expanded the structural range of orally active A3AR agonists for chronic pain treatment.


Asunto(s)
Agonistas del Receptor de Adenosina A3/síntesis química , Neuralgia/tratamiento farmacológico , Agonistas del Receptor de Adenosina A3/farmacología , Animales , Células CHO , Cricetulus , Humanos , Ratones , Relación Estructura-Actividad
17.
ACS Chem Biol ; 9(12): 2833-42, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25299434

RESUMEN

The P2Y14 receptor (P2Y14R), one of eight P2Y G protein-coupled receptors (GPCR), is involved in inflammatory, endocrine, and hypoxic processes and is an attractive pharmaceutical target. The goal of this research is to develop high-affinity P2Y14R fluorescent probes based on the potent and highly selective antagonist 4-(4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl)-2-naphthoic acid (6, PPTN). A model of hP2Y14R based on recent hP2Y12R X-ray structures together with simulated antagonist docking suggested that the piperidine ring is suitable for fluorophore conjugation while preserving affinity. Chain-elongated alkynyl or amino derivatives of 6 for click or amide coupling were synthesized, and their antagonist activities were measured in hP2Y14R-expressing CHO cells. Moreover, a new Alexa Fluor 488 (AF488) containing derivative 30 (MRS4174, Ki = 80 pM) exhibited exceptionally high affinity, as compared to 13 nM for the alkyne precursor 22. A flow cytometry assay employing 30 as a fluorescent probe was used to quantify specific binding to P2Y14R. Known P2Y receptor ligands inhibited binding of 30 with properties consistent with their previously established receptor selectivities and affinities. These results illustrate that potency in this series of 2-naphthoic acid derivatives can be preserved by chain functionalization, leading to highly potent fluorescent molecular probes for P2Y14R. Such conjugates will be useful tools in expanding the SAR of this receptor, which still lacks chemical diversity in its collective ligands. This approach demonstrates the predictive power of GPCR homology modeling and the relevance of newly determined X-ray structures to GPCR medicinal chemistry.


Asunto(s)
Colorantes Fluorescentes/química , Sondas Moleculares/química , Naftalenos/química , Antagonistas del Receptor Purinérgico P2/química , Receptores Purinérgicos P2/química , Animales , Células CHO , Química Clic , Cumarinas/química , Cricetulus , Colorantes Fluorescentes/síntesis química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Sondas Moleculares/síntesis química , Piperidinas/química , Antagonistas del Receptor Purinérgico P2/síntesis química , Rodaminas/química , Homología Estructural de Proteína , Relación Estructura-Actividad , Xantenos/química
18.
Bioconjug Chem ; 25(10): 1847-54, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25248077

RESUMEN

The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N(6) substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities.


Asunto(s)
Agonistas del Receptor de Adenosina A2/química , Agonistas del Receptor de Adenosina A2/farmacología , Agonistas del Receptor de Adenosina A3/química , Agonistas del Receptor de Adenosina A3/farmacología , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A3/metabolismo , Células HEK293 , Humanos , Isomerismo , Ligandos , Simulación del Acoplamiento Molecular , Procesos Fotoquímicos , Receptor de Adenosina A2A/química , Receptor de Adenosina A3/química
19.
ACS Med Chem Lett ; 5(9): 1043-8, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25221664

RESUMEN

Adenosine receptors (ARs) are members of the G protein-coupled receptor (GPCR) superfamily and have shown much promise as therapeutic targets. We have used an agonist-bound A2AAR X-ray crystallographic structure to design a chemically reactive agonist for site-specific chemical modification of the receptor. To further explore and chemically engineer its binding cavity, a 2-nitrophenyl active ester was attached through an elongated chain at adenine C2 position. This general structure was designed for irreversible transfer of a terminal acyl group to a nucleophilic amino group on the A2AAR. Preincubation with several O-acyl derivatives prevented radioligand binding that was not regenerated upon extensive washing. In silico receptor docking suggested two lysine residues (second extracellular loop) as potential target sites for an O-acetyl derivative (MRS5854, 3a), and site-directed mutagenesis indicated that K153 but not K150 is essential. Similarly, a butyl azide for click reaction was incorporated in the active ester moiety (3b). These promising results indicate a stable, covalent modification of the receptor by several reactive adenosine derivatives, which could be chemical tools for future imaging, structural probing, and drug discovery. Thus, structure-based ligand design has guided the site-specific modification of a GPCR.

20.
J Am Chem Soc ; 136(35): 12296-303, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25116377

RESUMEN

A programmable ligand display system can be used to dissect the multivalent effects of ligand binding to a membrane receptor. An antagonist of the A2A adenosine receptor, a G-protein-coupled receptor that is a drug target for neurodegenerative conditions, was displayed in 35 different multivalent configurations, and binding to A2A was determined. A theoretical model based on statistical mechanics was developed to interpret the binding data, suggesting the importance of receptor dimers. Using this model, extended multivalent arrangements of ligands were constructed with progressive improvements in binding to A2A. The results highlight the ability to use a highly controllable multivalent approach to determine optimal ligand valency and spacing that can be subsequently optimized for binding to a membrane receptor. Models explaining the multivalent binding data are also presented.


Asunto(s)
Antagonistas del Receptor de Adenosina A2/farmacología , ADN/farmacología , Ácidos Nucleicos de Péptidos/farmacología , Receptor de Adenosina A2A/metabolismo , Antagonistas del Receptor de Adenosina A2/química , Sitios de Unión , ADN/química , Humanos , Ligandos , Modelos Moleculares , Nanoestructuras/química , Ácidos Nucleicos de Péptidos/química , Unión Proteica , Receptor de Adenosina A2A/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...