Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J R Soc Interface ; 20(205): 20230174, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37528680

RESUMEN

Feedback control theory facilitates the development of self-regulating systems with desired performance which are predictable and insensitive to disturbances. Feedback regulatory topologies are found in many natural systems and have been of key importance in the design of reliable synthetic bio-devices operating in complex biological environments. Here, we study control schemes for biomolecular processes with two outputs of interest, expanding previously described concepts based on single-output systems. Regulation of such processes may unlock new design possibilities but can be challenging due to coupling interactions; also potential disturbances applied on one of the outputs may affect both. We therefore propose architectures for robustly manipulating the ratio/product and linear combinations of the outputs as well as each of the outputs independently. To demonstrate their characteristics, we apply these architectures to a simple process of two mutually activated biomolecular species. We also highlight the potential for experimental implementation by exploring synthetic realizations both in vivo and in vitro. This work presents an important step forward in building bio-devices capable of sophisticated functions.

2.
Biotechnol Adv ; 64: 108117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36813010

RESUMEN

Living organisms produce a wide range of metabolites. Because of their potential antibacterial, antifungal, antiviral, or cytostatic properties, such natural molecules are of high interest to the pharmaceutical industry. In nature, these metabolites are often synthesized via secondary metabolic biosynthetic gene clusters that are silent under the typical culturing conditions. Among different techniques used to activate these silent gene clusters, co-culturing of "producer" species with specific "inducer" microbes is a particularly appealing approach due to its simplicity. Although several "inducer-producer" microbial consortia have been reported in the literature and hundreds of different secondary metabolites with attractive biopharmaceutical properties have been described as a result of co-cultivating inducer-producer consortia, less attention has been devoted to the understanding of the mechanisms and possible means of induction for production of secondary metabolites in co-cultures. This lack of understanding of fundamental biological functions and inter-species interactions significantly limits the diversity and yield of valuable compounds using biological engineering tools. In this review, we summarize and categorize the known physiological mechanisms of production of secondary metabolites in inducer-producer consortia, and then discuss approaches that could be exploited to optimize the discovery and production of secondary metabolites.


Asunto(s)
Productos Biológicos , Consorcios Microbianos , Metabolismo Secundario/genética , Productos Biológicos/metabolismo , Bioingeniería , Biología Sintética/métodos
3.
J R Soc Interface ; 19(189): 20210737, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35440202

RESUMEN

We introduce a new design framework for implementing negative feedback regulation in synthetic biology, which we term 'dichotomous feedback'. Our approach is different from current methods, in that it sequesters existing fluxes in the process to be controlled, and in this way takes advantage of the process's architecture to design the control law. This signal sequestration mechanism appears in many natural biological systems and can potentially be easier to realize than 'molecular sequestration' and other comparison motifs that are nowadays common in biomolecular feedback control design. The loop is closed by linking the strength of signal sequestration to the process output. Our feedback regulation mechanism is motivated by two-component signalling systems, where a second response regulator could be competing with the natural response regulator thus sequestering kinase activity. Here, dichotomous feedback is established by increasing the concentration of the second response regulator as the level of the output of the natural process increases. Extensive analysis demonstrates how this type of feedback shapes the signal response, attenuates intrinsic noise while increasing robustness and reducing crosstalk.


Asunto(s)
Retroalimentación Fisiológica , Biología Sintética , Retroalimentación , Retroalimentación Fisiológica/fisiología , Fosforilación , Transducción de Señal/fisiología , Biología Sintética/métodos
4.
ACS Synth Biol ; 11(3): 1349-1360, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35255684

RESUMEN

Advances in synthetic biology enable the reprogramming of bacteria as smart agents to specifically target tumors and locally release anticancer drugs in a highly controlled manner. However, the bench-to-bedside translation of engineered bacteria is often impeded by genetic instability and the potential risk of uncontrollable replication of engineered bacteria inside the patient. SimCells (simple cells) are chromosome-free bacteria controlled by designed gene circuits, which can bypass the interference of the native gene network in bacteria and eliminate the risk of bacterial uncontrolled growth. Here, we describe the reprogramming of SimCells and mini-SimCells to serve as "safe and live drugs" for targeted cancer therapy. We engineer SimCells to display nanobodies on the surface for the binding of carcinoembryonic antigen (CEA), which is an important biomarker found commonly in colorectal cancer cells. We show that SimCells and mini-SimCells with surface display of anti-CEA nanobody can specifically bind CEA-expressing Caco2 cancer cells in vitro while leaving the non-CEA-expressing SW80 cancer cells untouched. These cancer-targeting SimCells and mini-SimCells induced cancer cell death in vitro by compromising the plasma membrane of cancer cells. The cancer-killing effect can be further enhanced by an aspirin/salicylate inducible gene circuit that converts salicylate into catechol, a potent anticancer. This work highlights the potential of SimCells and mini-SimCells for targeted cancer therapy and lays the foundation for the application of synthetic biology to medicine.


Asunto(s)
Células Artificiales , Neoplasias , Células CACO-2 , Antígeno Carcinoembrionario/genética , Antígeno Carcinoembrionario/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Salicilatos , Biología Sintética
5.
mSystems ; 7(1): e0097521, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35014871

RESUMEN

Biological nitrogen fixation in rhizobium-legume symbioses is of major importance for sustainable agricultural practices. To establish a mutualistic relationship with their plant host, rhizobia transition from free-living bacteria in soil to growth down infection threads inside plant roots and finally differentiate into nitrogen-fixing bacteroids. We reconstructed a genome-scale metabolic model for Rhizobium leguminosarum and integrated the model with transcriptome, proteome, metabolome, and gene essentiality data to investigate nutrient uptake and metabolic fluxes characteristic of these different lifestyles. Synthesis of leucine, polyphosphate, and AICAR is predicted to be important in the rhizosphere, while myo-inositol catabolism is active in undifferentiated nodule bacteria in agreement with experimental evidence. The model indicates that bacteroids utilize xylose and glycolate in addition to dicarboxylates, which could explain previously described gene expression patterns. Histidine is predicted to be actively synthesized in bacteroids, consistent with transcriptome and proteome data for several rhizobial species. These results provide the basis for targeted experimental investigation of metabolic processes specific to the different stages of the rhizobium-legume symbioses. IMPORTANCE Rhizobia are soil bacteria that induce nodule formation on plant roots and differentiate into nitrogen-fixing bacteroids. A detailed understanding of this complex symbiosis is essential for advancing ongoing efforts to engineer novel symbioses with cereal crops for sustainable agriculture. Here, we reconstruct and validate a genome-scale metabolic model for Rhizobium leguminosarum bv. viciae 3841. By integrating the model with various experimental data sets specific to different stages of symbiosis formation, we elucidate the metabolic characteristics of rhizosphere bacteria, undifferentiated bacteria inside root nodules, and nitrogen-fixing bacteroids. Our model predicts metabolic flux patterns for these three distinct lifestyles, thus providing a framework for the interpretation of genome-scale experimental data sets and identifying targets for future experimental studies.


Asunto(s)
Fabaceae , Rhizobium leguminosarum , Rhizobium , Rhizobium leguminosarum/genética , Proteoma/metabolismo , Fabaceae/metabolismo , Rhizobium/metabolismo , Nitrógeno/metabolismo
6.
iScience ; 24(12): 103462, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34927021

RESUMEN

Cells can sense temporal changes of molecular signals, allowing them to predict environmental variations and modulate their behavior. This paper elucidates biomolecular mechanisms of time derivative computation, facilitating the design of reliable synthetic differentiator devices for a variety of applications, ultimately expanding our understanding of cell behavior. In particular, we describe and analyze three alternative biomolecular topologies that are able to work as signal differentiators to input signals around their nominal operation. We propose strategies to preserve their performance even in the presence of high-frequency input signal components which are detrimental to the performance of most differentiators. We find that the core of the proposed topologies appears in natural regulatory networks and we further discuss their biological relevance. The simple structure of our designs makes them promising tools for realizing derivative control action in synthetic biology.

7.
Sci Adv ; 7(31)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34330708

RESUMEN

Rhizobia induce nodule formation on legume roots and differentiate into bacteroids, which catabolize plant-derived dicarboxylates to reduce atmospheric N2 into ammonia. Despite the agricultural importance of this symbiosis, the mechanisms that govern carbon and nitrogen allocation in bacteroids and promote ammonia secretion to the plant are largely unknown. Using a metabolic model derived from genome-scale datasets, we show that carbon polymer synthesis and alanine secretion by bacteroids facilitate redox balance in microaerobic nodules. Catabolism of dicarboxylates induces not only a higher oxygen demand but also a higher NADH/NAD+ ratio than sugars. Modeling and 13C metabolic flux analysis indicate that oxygen limitation restricts the decarboxylating arm of the tricarboxylic acid cycle, which limits ammonia assimilation into glutamate. By tightly controlling oxygen supply and providing dicarboxylates as the energy and electron source donors for N2 fixation, legumes promote ammonia secretion by bacteroids. This is a defining feature of rhizobium-legume symbioses.

8.
PLoS Genet ; 17(2): e1009099, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33539353

RESUMEN

Regulation by oxygen (O2) in rhizobia is essential for their symbioses with plants and involves multiple O2 sensing proteins. Three sensors exist in the pea microsymbiont Rhizobium leguminosarum Rlv3841: hFixL, FnrN and NifA. At low O2 concentrations (1%) hFixL signals via FxkR to induce expression of the FixK transcription factor, which activates transcription of downstream genes. These include fixNOQP, encoding the high-affinity cbb3-type terminal oxidase used in symbiosis. In free-living Rlv3841, the hFixL-FxkR-FixK pathway was active at 1% O2, and confocal microscopy showed hFixL-FxkR-FixK activity in the earliest stages of Rlv3841 differentiation in nodules (zones I and II). Work on Rlv3841 inside and outside nodules showed that the hFixL-FxkR-FixK pathway also induces transcription of fnrN at 1% O2 and in the earliest stages of Rlv3841 differentiation in nodules. We confirmed past findings suggesting a role for FnrN in fixNOQP expression. However, unlike hFixL-FxkR-FixK, Rlv3841 FnrN was only active in the near-anaerobic zones III and IV of pea nodules. Quantification of fixNOQP expression in nodules showed this was driven primarily by FnrN, with minimal direct hFixL-FxkR-FixK induction. Thus, FnrN is key for full symbiotic expression of fixNOQP. Without FnrN, nitrogen fixation was reduced by 85% in Rlv3841, while eliminating hFixL only reduced fixation by 25%. The hFixL-FxkR-FixK pathway effectively primes the O2 response by increasing fnrN expression in early differentiation (zones I-II). In zone III of mature nodules, near-anaerobic conditions activate FnrN, which induces fixNOQP transcription to the level required for wild-type nitrogen fixation activity. Modelling and transcriptional analysis indicates that the different O2 sensitivities of hFixL and FnrN lead to a nuanced spatiotemporal pattern of gene regulation in different nodule zones in response to changing O2 concentration. Multi-sensor O2 regulation is prevalent in rhizobia, suggesting the fine-tuned control this enables is common and maximizes the effectiveness of the symbioses.


Asunto(s)
Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo , Oxígeno/metabolismo , Rhizobium leguminosarum/metabolismo , Simbiosis/genética , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Fabaceae/genética , Fabaceae/metabolismo , Regulación Bacteriana de la Expresión Génica/genética , Histidina Quinasa/genética , Mutación , Fijación del Nitrógeno/genética , Operón/genética , Rhizobium leguminosarum/genética , Factores de Transcripción/genética
9.
PLoS Biol ; 18(7): e3000794, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32730242

RESUMEN

The precision and repeatability of in vivo biological studies is predicated upon methods for isolating a targeted subsystem from external sources of noise and variability. However, in many experimental frameworks, this is made challenging by nonstatic environments during host cell growth, as well as variability introduced by manual sampling and measurement protocols. To address these challenges, we developed Chi.Bio, a parallelised open-source platform that represents a new experimental paradigm in which all measurement and control actions can be applied to a bulk culture in situ. In addition to continuous-culturing capabilities, it incorporates tunable light outputs, spectrometry, and advanced automation features. We demonstrate its application to studies of cell growth and biofilm formation, automated in silico control of optogenetic systems, and readout of multiple orthogonal fluorescent proteins in situ. By integrating precise measurement and actuation hardware into a single low-cost platform, Chi.Bio facilitates novel experimental methods for synthetic, systems, and evolutionary biology and broadens access to cutting-edge research capabilities.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo/instrumentación , Optogenética/instrumentación , Automatización , Biopelículas , Proliferación Celular , Simulación por Computador , Programas Informáticos
10.
J Theor Biol ; 486: 110077, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31715181

RESUMEN

Combating the evolution of widespread antibiotic resistance is one of the most pressing challenges facing modern medicine. Recent research has demonstrated that the evolution of pathogens with high levels of resistance can be accelerated by spatial and temporal inhomogeneities in antibiotic concentration, which frequently arise in patients and the environment. Strategies to predict and counteract the effects of such inhomogeneities will be critical in the fight against resistance. In this paper we develop a mechanistic framework for modelling the adaptive evolution of resistance in the presence of spatiotemporal antibiotic concentrations, which treats the adaptive process as an interaction between two mutually orthogonal forces; the first returns cells to their wild-type state in the absence of antibiotic selection, and the second selects for increased coping ability in the presence of an antibiotic. We apply our model to investigate laboratory adaptation experiments, and then extend it to consider the case in which multiple strategies for resistance undergo competitive evolution.


Asunto(s)
Adaptación Fisiológica , Antibacterianos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Microbiana/genética , Humanos
11.
ACS Synth Biol ; 8(10): 2212-2219, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31500408

RESUMEN

The robustness and reliability of synthetic biological systems can be substantially improved by the introduction of feedback control architectures that parallel those employed in traditional engineering disciplines. One common control goal is adaptation (or disturbance rejection), which refers to a system's ability to maintain a constant output despite variation in some of its constituent processes (as frequently occurs in noisy cellular environments) or external perturbations. In this paper, we propose and analyze a control architecture that employs integrase and excisionase proteins to invert regions of DNA and an mRNA-mRNA annihilation reaction. Combined, these components approximate the functionality of a switching controller (as employed in classical control engineering) with three distinct operational modes. We demonstrate that this system is capable of near-perfect adaptation to variation in rates of both transcription and translation and can also operate without excessive consumption of cellular resources. The system's steady-state behavior is analyzed, and limits on its operating range are derived. Deterministic simulations of its dynamics are presented and are then extended to the stochastic case, which treats biochemical reactions as discrete events.


Asunto(s)
ADN/genética , Retroalimentación Fisiológica/fisiología , ARN Mensajero/genética , Biología Sintética/métodos , Modelos Biológicos , Reproducibilidad de los Resultados
12.
Appl Environ Microbiol ; 85(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30658983

RESUMEN

A simple aspirin-inducible system has been developed and characterized in Escherichia coli by employing the Psal promoter and SalR regulation system originally from Acinetobacter baylyi ADP1. Mutagenesis at the DNA binding domain (DBD) and chemical recognition domain (CRD) of the SalR protein in A. baylyi ADP1 suggests that the effector-free form, SalRr, can compete with the effector-bound form, SalRa, binding the Psal promoter and repressing gene transcription. The induction of the Psal promoter was compared in two different gene circuit designs: a simple regulation system (SRS) and positive autoregulation (PAR). Both regulatory circuits were induced in a dose-dependent manner in the presence of 0.05 to 10 µM aspirin. Overexpression of SalR in the SRS circuit reduced both baseline leakiness and the strength of the Psal promoter. The PAR circuit forms a positive feedback loop that fine-tunes the level of SalR. A mathematical simulation based on the SalRr/SalRa competitive binding model not only fit the observed experimental results in SRS and PAR circuits but also predicted the performance of a new gene circuit design for which weak expression of SalR in the SRS circuit should significantly improve induction strength. The experimental result is in good agreement with this prediction, validating the SalRr/SalRa competitive binding model. The aspirin-inducible systems were also functional in probiotic strain E. coli Nissle 1917 and SimCells produced from E. coli MC1000 ΔminD These well-characterized and modularized aspirin-inducible gene circuits would be useful biobricks for synthetic biology.IMPORTANCE An aspirin-inducible SalR/Psal regulation system, originally from Acinetobacter baylyi ADP1, has been designed for E. coli strains. SalR is a typical LysR-type transcriptional regulator (LTTR) family protein and activates the Psal promoter in the presence of aspirin or salicylate in the range of 0.05 to 10 µM. The experimental results and mathematical simulations support the competitive binding model of the SalR/Psal regulation system in which SalRr competes with SalRa to bind the Psal promoter and affect gene transcription. The competitive binding model successfully predicted that weak SalR expression would significantly improve the inducible strength of the SalR/Psal regulation system, which is confirmed by the experimental results. This provides an important mechanism model to fine-tune transcriptional regulation of the LTTR family, which is the largest family of transcriptional regulators in the prokaryotic kingdom. In addition, the SalR/Psal regulation system was also functional in probiotic strain E. coli Nissle 1917 and minicell-derived SimCells, which would be a useful biobrick for environmental and medical applications.


Asunto(s)
Aspirina/metabolismo , Técnicas Biosensibles/métodos , Escherichia coli/metabolismo , Acinetobacter/genética , Acinetobacter/metabolismo , Técnicas Biosensibles/instrumentación , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Regiones Promotoras Genéticas , Salicilatos/metabolismo
13.
Synth Biol (Oxf) ; 4(1): ysz006, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32995533

RESUMEN

This article presents the experience of a team of students and academics in developing a post-graduate training program in the new field of Synthetic Biology. Our Centre for Doctoral Training in Synthetic Biology (SynBioCDT) is an initiative funded by the United Kingdom's Research Councils of Engineering and Physical Sciences (EPSRC), and Biotechnology and Biological Sciences (BBSRC). SynBioCDT is a collaboration between the Universities of Oxford, Bristol and Warwick, and has been successfully running since 2014, training 78 students in this field. In this work, we discuss the organization of the taught, research and career development training. We also address the challenges faced when offering an interdisciplinary program. The article concludes with future directions to continue the development of the SynBioCDT.

14.
Nucleic Acids Res ; 46(18): 9875-9889, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30212900

RESUMEN

Negative feedback is known to enable biological and man-made systems to perform reliably in the face of uncertainties and disturbances. To date, synthetic biological feedback circuits have primarily relied upon protein-based, transcriptional regulation to control circuit output. Small RNAs (sRNAs) are non-coding RNA molecules that can inhibit translation of target messenger RNAs (mRNAs). In this work, we modelled, built and validated two synthetic negative feedback circuits that use rationally-designed sRNAs for the first time. The first circuit builds upon the well characterised tet-based autorepressor, incorporating an externally-inducible sRNA to tune the effective feedback strength. This allows more precise fine-tuning of the circuit output in contrast to the sigmoidal, steep input-output response of the autorepressor alone. In the second circuit, the output is a transcription factor that induces expression of an sRNA, which inhibits translation of the mRNA encoding the output, creating direct, closed-loop, negative feedback. Analysis of the noise profiles of both circuits showed that the use of sRNAs did not result in large increases in noise. Stochastic and deterministic modelling of both circuits agreed well with experimental data. Finally, simulations using fitted parameters allowed dynamic attributes of each circuit such as response time and disturbance rejection to be investigated.


Asunto(s)
Escherichia coli/genética , Retroalimentación Fisiológica , ARN Bacteriano/genética , ARN Mensajero/genética , ARN Pequeño no Traducido/genética , Proteínas Represoras/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Modelos Genéticos , Plásmidos/genética , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Pequeño no Traducido/metabolismo , Proteínas Represoras/metabolismo
15.
ACS Synth Biol ; 7(5): 1201-1210, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29745649

RESUMEN

Introducing synthetic constructs into bacteria often carries a burden that leads to reduced fitness and selective pressure for organisms to mutate their constructs and hence to a reduced functional lifetime. Understanding burden requires suitable methods for accurate measurement and quantification. We develop a dynamic growth model from physiologically relevant first-principles that allows parameters relevant to burden to be extracted from standard growth curves. We test several possibilities for the response of a bacterium to a new environment in terms of resource allocation. We find that burden manifests in the time taken to respond to new conditions as well as the rate of growth in exponential phase. Furthermore, we see that the presence of a synthetic construct hastens the reduction of ribosomes when approaching stationary phase, altering memory effects from previous periods of growth.


Asunto(s)
Microorganismos Modificados Genéticamente/fisiología , Modelos Biológicos , Biología de Sistemas/métodos , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Proteínas Bacterianas/metabolismo , Medios de Cultivo , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Ribosomas/genética , Ribosomas/metabolismo
16.
ACS Synth Biol ; 7(6): 1528-1537, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29799736

RESUMEN

The measurement of noise is critical when assessing the design and function of synthetic biological systems. Cell-to-cell variability can be quantified experimentally using single-cell measurement techniques such as flow cytometry and fluorescent microscopy. However, these approaches are costly and impractical for high-throughput parallelized experiments, which are frequently conducted using plate-reader devices. In this paper we describe reporter systems that allow estimation of the cell-to-cell variability in a biological system's output using only measurements of a cell culture's bulk properties. We analyze one potential implementation of such a system that is based upon a fluorescent protein FRET reporter pair, finding that with typical parameters from the literature it is able to reliably estimate variability. We also briefly describe an alternate implementation based upon an activating sRNA circuit. The feasible region of parameter values for which the reporter system can function is assessed, and the dependence of its performance on both extrinsic and intrinsic noise is investigated. Experimental realization of these constructs can yield novel reporter systems that allow measurement of a synthetic gene circuit's output, as well as the intrapopulation variability of this output, at little added cost.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Redes Reguladoras de Genes , Biología Sintética/métodos , Técnicas de Cultivo de Célula , Transferencia Resonante de Energía de Fluorescencia/estadística & datos numéricos , Regulación de la Expresión Génica , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , ARN de Transferencia/genética , Sensibilidad y Especificidad
17.
Cell Syst ; 5(5): 498-508.e23, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29055671

RESUMEN

Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology.


Asunto(s)
Homeostasis/fisiología , Adenosina Trifosfato , Animales , Tampones (Química) , Retroalimentación , Concentración de Iones de Hidrógeno , Mamíferos/fisiología , Modelos Biológicos
18.
Sci Rep ; 7(1): 4599, 2017 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-28676696

RESUMEN

Riboswitches are structural genetic regulatory elements that directly couple the sensing of small molecules to gene expression. They have considerable potential for applications throughout synthetic biology and bio-manufacturing as they are able to sense a wide range of small molecules and regulate gene expression in response. Despite over a decade of research they have yet to reach this considerable potential as they cannot yet be treated as modular components. This is due to several limitations including sensitivity to changes in genetic context, low tunability, and variability in performance. To overcome the associated difficulties with riboswitches, we have designed and introduced a novel genetic element called a ribo-attenuator in Bacteria. This genetic element allows for predictable tuning, insulation from contextual changes, and a reduction in expression variation. Ribo-attenuators allow riboswitches to be treated as truly modular and tunable components, thus increasing their reliability for a wide range of applications.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Ingeniería Genética/métodos , Riboswitch , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Biología Sintética , Vibrio vulnificus/genética , Vibrio vulnificus/metabolismo
19.
ACS Synth Biol ; 6(9): 1663-1671, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28602075

RESUMEN

Accurate control of a biological process is essential for many critical functions in biology, from the cell cycle to proteome regulation. To achieve this, negative feedback is frequently employed to provide a highly robust and reliable output. Feedback is found throughout biology and technology, but due to challenges posed by its implementation, it is yet to be widely adopted in synthetic biology. In this paper we design a synthetic feedback network using a class of recombinase proteins called integrases, which can be re-engineered to flip the orientation of DNA segments in a digital manner. This system is highly orthogonal, and demonstrates a strong capability for regulating and reducing the expression variability of genes being transcribed under its control. An excisionase protein provides the negative feedback signal to close the loop in this system, by flipping DNA segments in the reverse direction. Our integrase/excisionase negative feedback system thus provides a modular architecture that can be tuned to suit applications throughout synthetic biology and biomanufacturing that require a highly robust and orthogonally controlled output.


Asunto(s)
ADN/genética , Retroalimentación Fisiológica/fisiología , Regulación de la Expresión Génica/genética , Genes de Cambio/genética , Genes Sintéticos/genética , Modelos Genéticos , Recombinasas/genética , Simulación por Computador , Escherichia coli/genética , Mejoramiento Genético/métodos , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Biología Sintética/métodos
20.
Phys Rev E ; 95(3-1): 032314, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28415348

RESUMEN

Scientists use mathematical modeling as a tool for understanding and predicting the properties of complex physical systems. In highly parametrized models there often exist relationships between parameters over which model predictions are identical, or nearly identical. These are known as structural or practical unidentifiabilities, respectively. They are hard to diagnose and make reliable parameter estimation from data impossible. They furthermore imply the existence of an underlying model simplification. We describe a scalable method for detecting unidentifiabilities, as well as the functional relations defining them, for generic models. This allows for model simplification, and appreciation of which parameters (or functions thereof) cannot be estimated from data. Our algorithm can identify features such as redundant mechanisms and fast time-scale subsystems, as well as the regimes in parameter space over which such approximations are valid. We base our algorithm on a quantification of regional parametric sensitivity that we call 'multiscale sloppiness'. Traditionally, the link between parametric sensitivity and the conditioning of the parameter estimation problem is made locally, through the Fisher information matrix. This is valid in the regime of infinitesimal measurement uncertainty. We demonstrate the duality between multiscale sloppiness and the geometry of confidence regions surrounding parameter estimates made where measurement uncertainty is non-negligible. Further theoretical relationships are provided linking multiscale sloppiness to the likelihood-ratio test. From this, we show that a local sensitivity analysis (as typically done) is insufficient for determining the reliability of parameter estimation, even with simple (non)linear systems. Our algorithm can provide a tractable alternative. We finally apply our methods to a large-scale, benchmark systems biology model of necrosis factor (NF)-κB, uncovering unidentifiabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...