Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 56(76): 11215-11218, 2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32815976

RESUMEN

Transitions between protein states are triggered by external stimuli. This knowledge leads to the control of protein function. Herein, we report a large scale (90 µs) study on the conformational space of the major light harvesting complex II, based on a comprehensive array of external stimuli.

2.
Biochim Biophys Acta Biomembr ; 1861(12): 183059, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518553

RESUMEN

Depending on the amount of light, the photosystem II (PSII) antennae or Light Harvesting Complexes (LHCII) switch between two states within the thylakoid membranes of higher plants, i.e., a light-harvesting and a photoprotective mode. This switch is co-regulated by a pH gradient (ΔpH) across the membrane and the interaction with the PSII subunit S (PsbS) that is proposed to induce LHCII aggregation. Herein we employ all-atom and coarse-grained molecular simulations of the major LHCII trimer at low and excess ΔpH, as well as in complexation with PsbS within a native thylakoid membrane model. Our results demonstrate the aggregation potential of LHCII and, consistent with the experimental literature, reveal the role of PsbS at atomic resolution. PsbS alters the LHCII-thylakoid lipid interactions and restores the LHCII mobility that is lost in the transition to photoprotective conditions (low lumenal pH). In agreement with this finding, diffusion of the integral membrane protein LHCII is dependent on both, electrostatic interactions and hydrophobic mismatch, while it does not obey the Saffman-Delbrück diffusion model.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/metabolismo , Tilacoides/metabolismo , Simulación por Computador , Concentración de Iones de Hidrógeno , Luz , Complejos de Proteína Captadores de Luz/ultraestructura , Modelos Moleculares , Complejo de Proteína del Fotosistema II/ultraestructura , Relación Estructura-Actividad , Tilacoides/ultraestructura
3.
Biophys J ; 113(11): 2364-2372, 2017 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-29211990

RESUMEN

Nonphotochemical quenching is the protective mechanism against overexcitation of photosystem II, triggered by excess ΔpH in photosynthetic membranes. The light-harvesting complexes (LHCs), the de-epoxidation of violaxanthin to zeaxanthin, and the photosystem II subunit S (PsbS) work in synergy for an optimized multilevel response. Understanding the fine details of this synergy has proven challenging to scientific research. Here, we employ large-scale, all-atom molecular simulations and beyond experimental insight, we proceed a step further in identifying the PsbS dynamics that could possibly be associated with this synergy. For the first time, to our knowledge, we probe the distinct behavior of PsbS under ΔpH that probes the details of the potential dimer-to-monomer transition, and in a violaxanthin/zeaxanthin-rich membrane, at an all-atom resolution. We propose that the lumen-exposed residues, threonine 162 and glutamic acid 173, form stabilizing hydrogen bonds between the PsbS monomers only at high lumen pH, whereas at low pH (excess ΔpH) this interaction is lost, and leads to higher flexibility of the protein and potentially to the dimer-to-monomer transition. Lastly, we discuss how conformational changes under the presence of ΔpH/zeaxanthin are related to the PsbS role in the current nonphotochemical quenching model in the literature. For the latter, we probe a PsbS-monomeric LHCII association. The association is proposed to potentially alter the monomeric LHCII sensitivity to ΔpH by changing the pKa values of interacting LHCII residues. This serves as an example where protonation-ligation events enhance protein-protein interactions fundamental to many life processes.


Asunto(s)
Modelos Moleculares , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Estrés Fisiológico , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Xantófilas/metabolismo
4.
Sci Rep ; 7(1): 2523, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28566748

RESUMEN

Photosynthesis is common in nature, converting sunlight energy into proton motive force and reducing power. The increased spectral range absorption of light exerted by pigments (i.e. chlorophylls, Chls) within Light Harvesting Complexes (LHCs) proves an important advantage under low light conditions. However, in the exposure to excess light, oxidative damages and ultimately cell death can occur. A down-regulatory mechanism, thus, has been evolved (non-photochemical quenching, NPQ). The mechanistic details of its major component (qE) are missing at the atomic scale. The research herein, initiates on solid evidence from the current NPQ state of the art, and reveals a detailed atomistic view by large scale Molecular Dynamics, Metadynamics and ab initio Simulations. The results demonstrate a complete picture of an elaborate common molecular design. All probed antenna proteins (major LHCII from spinach-pea, CP29 from spinach) show striking plasticity in helix-D, under NPQ conditions. This induces changes in Qy bands in excitation and absorption spectra of the near-by pigment pair (Chl613-614) that could emerge as a new quenching site. Zeaxanthin enhances this plasticity (and possibly the quenching) even at milder NPQ conditions.


Asunto(s)
Complejos de Proteína Captadores de Luz/química , Estrés Oxidativo/efectos de la radiación , Fotosíntesis/fisiología , Hojas de la Planta/efectos de la radiación , Arabidopsis/química , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Clorofila/química , Luz/efectos adversos , Simulación de Dinámica Molecular , Hojas de la Planta/química , Fuerza Protón-Motriz , Tilacoides/química , Tilacoides/efectos de la radiación
5.
Biochim Biophys Acta ; 1857(10): 1643-50, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27438094

RESUMEN

How do plants cope with excess light energy? Crop health and stress tolerance are governed by molecular photoprotective mechanisms. Protective exciton quenching in plants is activated by membrane energization, via unclear conformational changes in proteins called antennas. Here we show that pH and salt gradients stimulate the response of such an antenna under low and high energization by all-atom Molecular Dynamics Simulations. Novel insight establishes that helix-5 (H5) conformation in CP29 from spinach is regulated by chemiosmotic factors. This is selectively correlated with the chl-614 macrocycle deformation and interactions with nearby pigments, that could suggest a role in plant photoprotection. Adding to the significance of our findings, H5 domain is conserved among five antennas (LHCB1-5). These results suggest that light harvesting complexes of Photosystem II, one of the most abundant proteins on earth, can sense chemiosmotic gradients via their H5 domains in an upgraded role from a solar detector to also a chemiosmotic sensor.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Luz , Modelos Moleculares , Simulación de Dinámica Molecular , Complejo de Proteína del Fotosistema II/fisiología , Dominios Proteicos/fisiología , Spinacia oleracea/metabolismo , Spinacia oleracea/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...