Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Molecules ; 28(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570617

RESUMEN

The first-, second-, and third-order molecular nonlinear optical properties, including two-photon absorption of a series of derivatives, involving two dithienylethene (DTE) groups connected by several molecular linkers (bis(ethylene-1,2-dithiolato)Ni- (NiBDT), naphthalene, quasilinear oligothiophene chains), are investigated by employing density functional theory (DFT). These properties can be efficiently controlled by DTE switches, in connection with light of appropriate frequency. NiBDT, as a linker, is associated with a greater contrast, in comparison to naphthalene, between the first and second hyperpolarizabilities of the "open-open" and the "closed-closed" isomers. This is explained by invoking the low-lying excited states of NiBDT. It is shown that the second hyperpolarizability can be used as an index, which follows the structural changes induced by photochromism. Assuming a Förster type transfer mechanism, the intramolecular excited-state energy transfer (EET) mechanism is studied. Two important parameters related to this are computed: the electronic coupling (VDA) between the donor and acceptor fragments as well as the overlap between the absorption and emission spectra of the donor and acceptor groups. NiBDT as a linker is associated with a low electronic coupling, VDA, value. We found that VDA is affected by molecular geometry. Our results predict that the linker strongly influences the communication between the open-closed DTE groups. The sensitivity of the molecular nonlinear optical properties could assist with identification of molecular isomers.

2.
Nat Biomed Eng ; 2(1): 49, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-31015658

RESUMEN

In the version of this Article originally published, in Fig. 1c-e, on the x axes, the lines labelled 'Aß42' and 'Aß42(F19S;L34P)' grouped the data incorrectly; the line labelled Aß42 should have grouped the data for Random 1-2 and Clones 1-10, and the line labelled Aß42(F19S;L34P) should have only grouped the data for Random 1-2 on the right end of the plots and blots. These figures have now been corrected in all versions of the Article.

3.
Langmuir ; 33(20): 5077-5085, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28481539

RESUMEN

Water-in-oil microemulsions with biocompatible components were formulated to be used as carriers of natural antioxidants, such as hydroxytyrosol (HT) and gallic acid (GA). The system was composed of a mixture of natural surfactants, lecithin and monoglycerides, medium chain triglycerides, and aqueous phase. A dual approach was undertaken to study the structure and dynamics of these complicated systems. First, experimental data were collected by using adequate techniques, such as dynamic light scattering (DLS) and electron paramagnetic resonance (EPR) spectroscopy. Following this, a coarse-grained molecular dynamics (CGMD) study based on the experimental composition using the MARTINI force field was conducted. The simulations revealed the spontaneous formation of reverse micelles (RMs) starting from completely random initial conformations, underlying their enhanced thermodynamic stability. The location of the bioactive molecules, as well as the structure of the RM, were in accordance with the experimental findings. Furthermore, GA molecules were found to be located inside the water core, in contrast to the HT ones, which seem to lie at the surfactant interfacial layer. The difference in the antioxidants' molecular location was only revealed in detail from the computational analysis and explains the RM's swelling observed by GA in DLS measurements.


Asunto(s)
Simulación de Dinámica Molecular , Emulsiones , Micelas , Tensoactivos , Agua
4.
J Mol Graph Model ; 74: 177-192, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28458000

RESUMEN

DNA is the building block of life, as it carries the biological information controlling development, function and reproduction of all organisms. However, its central role in storing and transferring genetic information can be severely hindered by molecules with structure altering abilities. Fullerenes are nanoparticles that find a broad spectrum of uses, but their toxicological effects on living organisms upon exposure remain unclear. The present study examines the interactions of a diverse array of fullerenes with DNA, by means of Molecular Dynamics and MM-PBSA methodologies, with special focus on structural deformations that may hint toxicity implications. Our results show that pristine and hydroxylated fullerenes have no unwinding effects upon DNA structure, with the latter displaying binding preference to the DNA major groove, achieved by both direct formation of hydrogen bonds and water molecule mediation. Fluorinated derivatives are capable of penetrating DNA structure, forming intercalative complexes with high binding affinities.


Asunto(s)
ADN/química , Fulerenos/química , Secuencia de Bases , Sitios de Unión , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Termodinámica
5.
Adv Exp Med Biol ; 947: 303-324, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28168672

RESUMEN

The particular properties of nanomaterials have led to their rapidly increasing use in diverse fields of application. However, safety assessment is not keeping pace and there are still gaps in the understanding of their hazards. Computational models predicting nanotoxicity, such as (quantitative) structure-activity relationships ((Q)SARs), can contribute to safety evaluation, in line with general efforts to apply alternative methods in chemical risk assessment. Their development is highly dependent on the availability of reliable and high quality experimental data, both regarding the compounds' properties as well as the measured toxic effects. In particular, "nano-QSARs" should take the nano-specific characteristics into account. The information compiled needs to be well organized, quality controlled and standardized. Integrating the data in an overarching, structured data collection aims to (a) organize the data in a way to support modelling, (b) make (meta)data necessary for modelling available, and (c) add value by making a comparison between data from different sources possible.Based on the available data, specific descriptors can be derived to parameterize the nanomaterial-specific structure and physico-chemical properties appropriately. Furthermore, the interactions between nanoparticles and biological systems as well as small molecules, which can lead to modifications of the structure of the active nanoparticles, need to be described and taken into account in the development of models to predict the biological activity and toxicity of nanoparticles. The EU NanoPUZZLES project was part of a global cooperative effort to advance data availability and modelling approaches supporting the characterization and evaluation of nanomaterials.


Asunto(s)
Nanopartículas/efectos adversos , Nanopartículas/química , Simulación por Computador , Humanos , Nanoestructuras/efectos adversos , Nanoestructuras/química , Relación Estructura-Actividad Cuantitativa , Medición de Riesgo
6.
Nat Biomed Eng ; 1(10): 838-852, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31015593

RESUMEN

Protein misfolding and aggregation are common pathological features of several human diseases, including Alzheimer's disease and type 2 diabetes. Here, we report an integrated and generalizable bacterial system for the facile discovery of chemical rescuers of disease-associated protein misfolding. In this system, large combinatorial libraries of macrocyclic molecules are biosynthesized in Escherichia coli cells and simultaneously screened for their ability to rescue pathogenic protein misfolding and aggregation using a flow cytometric assay. We demonstrate the effectiveness of this approach by identifying drug-like, head-to-tail cyclic peptides that modulate the aggregation of the Alzheimer's disease-associated amyloid ß peptide. Biochemical, biophysical and biological assays using isolated amyloid ß peptide, primary neurons and various established Alzheimer's disease nematode models showed that the selected macrocycles potently inhibit the formation of neurotoxic amyloid ß peptide aggregates. We also applied the system to the identification of misfolding rescuers of mutant Cu/Zn superoxide dismutase-an enzyme linked with inherited forms of amyotrophic lateral sclerosis. Overall, the system enables the identification of molecules with therapeutic potential for rescuing the misfolding of disease-associated polypeptides.

7.
Chemistry ; 23(10): 2363-2378, 2017 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-27897357

RESUMEN

The synthesis of O-doped polyaromatic hydro- carbons in which two polycyclic aromatic hydrocarbon sub units are bridged through one or two O atoms has been achieved. This includes high-yield ring-closure key steps that, depending on the reaction conditions, result in the formation of furanyl or pyranopyranyl linkages through intramolecular C-O bond formation. Comprehensive photophysical measurements in solution showed that these compounds have exceptionally high emission yields and tunable absorption properties throughout the UV/Vis spectral region. Electrochemical investigations showed that in all cases O annulation increases the electron-donor capabilities by raising the HOMO energy level, whereas the LUMO energy level is less affected. Moreover, third-order nonlinear optical (NLO) measurements on solutions or thin films containing the dyes showed very good values of the second hyperpolarizability. Importantly, poly(methyl methacrylate) films containing the pyranopyranyl derivatives exhibited weak linear absorption and NLO absorption compared to the nonlinearity and NLO refraction, respectively, and thus revealed them to be exceptional organic materials for photonic devices.

8.
J Nanopart Res ; 18(9): 256, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27642255

RESUMEN

In this contribution, the advantages and limitations of two computational techniques that can be used for the investigation of nanoparticles activity and toxicity: classic nano-QSAR (Quantitative Structure-Activity Relationships employed for nanomaterials) and 3D nano-QSAR (three-dimensional Quantitative Structure-Activity Relationships, such us Comparative Molecular Field Analysis, CoMFA/Comparative Molecular Similarity Indices Analysis, CoMSIA analysis employed for nanomaterials) have been briefly summarized. Both approaches were compared according to the selected criteria, including: efficiency, type of experimental data, class of nanomaterials, time required for calculations and computational cost, difficulties in the interpretation. Taking into account the advantages and limitations of each method, we provide the recommendations for nano-QSAR modellers and QSAR model users to be able to determine a proper and efficient methodology to investigate biological activity of nanoparticles in order to describe the underlying interactions in the most reliable and useful manner.

9.
ChemMedChem ; 11(15): 1646-52, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27411556

RESUMEN

A combination of computational techniques and inhibition assay experiments was employed to identify hit compounds from commercial libraries with enhanced inhibitory potency against HIV type 1 aspartic protease (HIV PR). Extensive virtual screening with the aid of reliable pharmacophore models yielded five candidate protease inhibitors. Subsequent molecular dynamics and molecular mechanics Poisson-Boltzmann surface area free-energy calculations for the five ligand-HIV PR complexes suggested a high stability of the systems through hydrogen-bond interactions between the ligands and the protease's flaps (Ile50/50'), as well as interactions with residues of the active site (Asp25/25'/29/29'/30/30'). Binding-energy calculations for the three most promising compounds yielded values between -5 and -10 kcal mol(-1) and suggested that van der Waals interactions contribute most favorably to the total energy. The predicted binding-energy values were verified by in vitro inhibition assays, which showed promising results in the high nanomolar range. These results provide structural considerations that may guide further hit-to-lead optimization toward improved anti-HIV drugs.


Asunto(s)
Fármacos Anti-VIH/química , Proteasas de Ácido Aspártico/antagonistas & inhibidores , Secuencia de Aminoácidos , Proteasas de Ácido Aspártico/química , Descubrimiento de Drogas , VIH-1 , Ensayos Analíticos de Alto Rendimiento , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
10.
Bioorg Med Chem ; 24(8): 1683-95, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26970660

RESUMEN

Inhibition of group IIA secreted phospholipase A2 (GIIA sPLA2) has been an important objective for medicinal chemists. We have previously shown that inhibitors incorporating the 2-oxoamide functionality may inhibit human and mouse GIIA sPLA2s. Herein, the development of new potent inhibitors by molecular docking calculations using the structure of the known inhibitor 7 as scaffold, are described. Synthesis and biological evaluation of the new compounds revealed that the long chain 2-oxoamide based on (S)-valine GK241 led to improved activity (IC50=143 nM and 68 nM against human and mouse GIIA sPLA2, respectively). In addition, molecular dynamics simulations were employed to shed light on GK241 potent and selective inhibitory activity.


Asunto(s)
Fosfolipasas A2 Grupo II/antagonistas & inhibidores , Fosfolipasas A2 Grupo II/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Fosfolipasa A2/farmacología , Piridinas/farmacología , Animales , Relación Dosis-Respuesta a Droga , Humanos , Cinética , Ratones , Estructura Molecular , Inhibidores de Fosfolipasa A2/síntesis química , Inhibidores de Fosfolipasa A2/química , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
11.
J Phys Chem A ; 120(2): 284-98, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26690053

RESUMEN

A systematic analysis of the molecular structure, energetics, electronic (hyper)polarizabilities and their interaction-induced counterparts of C60 with a series of molecular graphene (MG) models, CmHn, where m = 24, 84, 114, 222, 366, 546 and n = 12, 24, 30, 42, 54, 66, was performed. All the reported data were computed by employing density functional theory and a series of basis sets. The main goal of the study is to investigate how alteration of the size of the MG model affects the strength of the interaction, charge rearrangement, and polarization and interaction-induced polarization of the complex, C60-MG. A Hirshfeld-based scheme has been employed in order to provide information on the intrinsic polarizability density representations of the reported complexes. It was found that the interaction energy increases approaching a limit of -26.98 kcal/mol for m = 366 and 546; the polarizability and second hyperpolarizability increase with increasing the size of MG. An opposite trend was observed for the dipole moment. Interestingly, the variation of the first hyperpolarizability is relatively small with m. Since polarizability is a key factor for the stability of molecular graphene with nucleobases (NB), a study of the magnitude of the interaction-induced polarizability of C84H24-NB complexes is also reported, aiming to reveal changes of its magnitude with the type of NB. The binding strength of C84H24-NB complexes is also computed and found to be in agreement with available theoretical and experimental data. The interaction involved in C60 B12N12H24-NB complexes has also been considered, featuring the effect of contamination on the binding strength between MG and NBs.


Asunto(s)
Fulerenos/química , Grafito/química , Nucleótidos/química
12.
J Enzyme Inhib Med Chem ; 31(1): 67-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26147348

RESUMEN

It has been reported that beta amyloid induces production of radical oxygen species and oxidative stress in neuronal cells, which in turn upregulates ß-secretase (BACE-1) expression and beta amyloid levels, thereby propagating oxidative stress and increasing neuronal injury. A series of resveratrol derivatives, known to be inhibitors of oxidative stress-induced neuronal cell death (oxytosis) were biologically evaluated against BACE-1 using homogeneous time-resolved fluorescence (TRF) assay. Correlation between oxytosis inhibitory and BACE-1 inhibitory activity of resveratrol derivatives was statistically significant, supporting the notion that BACE-1 may act as pivotal mediator of neuronal cell oxytosis. Four of the biologically evaluated resveratrol analogs demonstrated considerably higher activity than resveratrol in either assay. The discovery of some "hits" led us to initiate detailed docking studies associated with Molecular Dynamics in order to provide a plausible explanation for the experimental results and understand their molecular basis of action.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Simulación de Dinámica Molecular , Estilbenos/farmacología , Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Resveratrol , Estilbenos/química , Estilbenos/uso terapéutico , Relación Estructura-Actividad
13.
J Phys Chem B ; 119(48): 14971-85, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26523956

RESUMEN

Human serum albumin (HSA) is the most abundant blood plasma protein, which transports fatty acids, hormones, and drugs. We consider nanoparticle-HSA interactions by investigating the binding of HSA with three fullerene analogs. Long MD simulations, quantum mechanical (fragment molecular orbital, energy decomposition analysis, atoms-in-molecules), and free energy methods elucidated the binding mechanism in these complexes. Such a systematic study is valuable due to the lack of comprehensive theoretical approaches to date. The main elements of the mechanism include the following: binding to IIA site results in allosteric modulation of the IIIA and heme binding sites with an increase in α-helical structure of IIIA. Fullerenes displayed high binding affinities for HSA; therefore, HSA can be used as a fullerene carrier, facilitating any toxic function the fullerene may exert. Complex formation is driven by hydrogen bonding, van der Waals, nonpolar, charge transfer, and dispersion energy contributions. Proper functionalization of C60 has enhanced its binding to HSA by more than an order of magnitude. This feature may be important for biological applications (e.g., photodynamic therapy of cancer). Satisfactory agreement with relevant experimental and theoretical data has been obtained.


Asunto(s)
Fulerenos/química , Albúmina Sérica/química , Humanos , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Estructura Molecular , Teoría Cuántica
14.
J Mol Graph Model ; 62: 138-149, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26421414

RESUMEN

We investigate the binding mechanism in renin complexes, involving three drugs (remikiren, zankiren and enalkiren) and one lead compound, which was selected after screening the ZINC database. For this purpose, we used ab initio methods (the effective fragment potential, the variational perturbation theory, the energy decomposition analysis, the atoms-in-molecules), docking, molecular dynamics, and the MM-PBSA method. A biological assay for the lead compound has been performed to validate the theoretical findings. Importantly, binding free energy calculations for the three drug complexes are within 3 kcal/mol of the experimental values, thus further justifying our computational protocol, which has been validated through previous studies on 11 drug-protein systems. The main elements of the discovered mechanism are: (i) minor changes are induced to renin upon drug binding, (ii) the three drugs form an extensive network of hydrogen bonds with renin, whilst the lead compound presented diminished interactions, (iii) ligand binding in all complexes is driven by favorable van der Waals interactions and the nonpolar contribution to solvation, while the lead compound is associated with diminished van der Waals interactions compared to the drug-bound forms of renin, and (iv) the environment (H2O/Na(+)) has a small effect on the renin-remikiren interaction.


Asunto(s)
Renina/química , Dominio Catalítico , Dipéptidos/química , Pruebas de Enzimas , Enlace de Hidrógeno , Imidazoles/química , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Unión Proteica , Renina/antagonistas & inhibidores , Termodinámica
15.
Mol Pharm ; 12(3): 954-65, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25665128

RESUMEN

Cyclodextrins (CDs) are a well-known class of supermolecules that have been widely used to protect drugs against conjugation and metabolic inactivation as well as to enhance the aqueous solubility and hence to ameliorate the oral bioavailability of sparingly soluble drug molecules. The hepatoprotectant drug silibinin can be incorporated into CDs, and here we elucidate the interaction between the drug and the host at the molecular level. The complexation product of silibinin with 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) is characterized by Differential Scanning Calorimetry, mass spectrometry, solid and liquid high-resolution NMR spectroscopy. The chemical shift changes using (13)C CP/MAS on the complexing of the guest with the host provided significant information on the molecular interactions, and they were in agreement with the 2D NOESY results. These results point out that in both solid and liquid forms, the drug is engulfed and interacts with HP-ß-CD in identical manner. Molecular dynamics calculations have been performed to examine the thermodynamic characteristics associated with the silibinin-HP-ß-CD interactions and to study the stability of the complex. To approximate the physiological conditions, the aqueous solubility and dissolution characteristics of the complex at pH states simulating those of the upper gastrointestinal tract have been applied. To evaluate the antiproliferative activity of silibinin-HP-ß-CD complex comparatively to silibinin in MCF-7 human cancer cells, MTT assays have been performed.


Asunto(s)
Silimarina/administración & dosificación , Silimarina/química , beta-Ciclodextrinas/administración & dosificación , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Biofarmacia , Fenómenos Biofísicos , Proliferación Celular/efectos de los fármacos , Interacciones Farmacológicas , Humanos , Células MCF-7 , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Estructura Molecular , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/química , Silibina , Solubilidad
16.
J Enzyme Inhib Med Chem ; 30(4): 539-49, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25373502

RESUMEN

An anti-inflammatory complex of Ag(I), namely [Ag(tpp)3(asp)](dmf) [tpp = triphenylphosphine, aspH = aspirin, dmf = N,N-dimethylformamide], was synthesized in an attempt to develop novel metallotherapeutic molecules. STD (1)H NMR experiments were used to examine if this complex binds to LOX-1. The (1)H NMR spectra in buffer Tris/D2O betrayed the existence of two complexes: the complex of aspirin and the complex of salicylic acid produced after deacetylation of aspirin. Nevertheless, the STD spectra showed that only the complex of salicylic acid is bound to the enzyme. Molecular docking and dynamics were used to complement our study. The complexes were stabilized inside a large LOX-1 cavity by establishing a network of hydrogen bonds and steric interactions. The complex formation with salicylic acid was more favorable. The in silico results provide a plausible explanation of the experimental results, which showed that only the complex with salicylic acid enters the binding cavity.


Asunto(s)
Lipooxigenasa/metabolismo , Plata/metabolismo , Lipooxigenasa/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Espectroscopía de Protones por Resonancia Magnética , Plata/química
17.
J Chem Inf Model ; 54(8): 2294-308, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25060329

RESUMEN

Opioid G protein-coupled receptors (GPCRs) have been implicated in modulating pain, addiction, psychotomimesis, mood and memory, among other functions. We have employed the recently reported crystal structure of the human κ-opioid receptor (κ-OR) and performed molecular dynamics (MD), free energy, and ab initio calculations to elucidate the binding mechanism in complexes with antagonist JDTic and agonist SalA. The two systems were modeled in water and in DPPC lipid bilayers, in order to investigate the effect of the membrane upon conformational dynamics. MD and Atoms in Molecules (AIM) ab initio calculations for the complexes in water showed that each ligand was stabilized inside the binding site of the receptor through hydrogen bond interactions that involved residues Asp138 (with JDTic) and Gln115, His291, Leu212 (with SalA). The static description offered by the crystal structure was overcome to reveal a structural rearrangement of the binding pocket, which facilitated additional interactions between JDTic and Glu209/Tyr139. The role of Glu209 was emphasized, since it belongs to an extracellular loop that covers the binding site of the receptor and is crucial for ligand entrapment. The above interactions were retained in membrane complexes (SalA forms additional hydrogen bonds with Tyr139/312), except the Tyr139 interaction, which is abolished in the JDTic complex. For the first time, we report that JDTic alternates between a "V-shape" (stabilized via a water-mediated intramolecular interaction) and a more extended conformation, a feature that offers enough suppleness for effective binding. Moreover, MM-PBSA calculations showed that the more efficient JDTic binding to κ-OR compared to SalA (ΔGJDTic = -31.6 kcal mol(-1), ΔGSalA = -9.8 kcal mol(-1)) is attributed mostly to differences in electrostatic contributions. Importantly, our results are in qualitative agreement with the experiments (ΔGJDTic,exp = -14.4 kcal mol(-1), ΔGSalA,exp = -10.8 kcal mol(-1)). This study provides previously unattainable information on the dynamics of human κ-OR and insight on the rational design of drugs with improved pharmacological properties.


Asunto(s)
Analgésicos Opioides/química , Diterpenos de Tipo Clerodano/química , Antagonistas de Narcóticos/química , Piperidinas/química , Receptores Opioides kappa/química , Tetrahidroisoquinolinas/química , Sitios de Unión , Humanos , Ligandos , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Electricidad Estática , Relación Estructura-Actividad , Termodinámica
18.
J Phys Chem B ; 118(32): 9538-52, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25036111

RESUMEN

Mutations in the human immunodeficiency virus (HIV) enable virus replication even when appropriate antiretroviral therapy is followed, thus leading to the emergence of drug resistance. In a previous work, we systematically examined seven single mutations that are associated with saquinavir (SQV) resistance in HIV-1 protease (Tzoupis, H.; Leonis, G.; Mavromoustakos, T.; Papadopoulos, M. G. J. Chem. Theory Comput. 2013, 9, 1754-1764). Herein, we extend our analysis, which includes seven double (G48V-V82A, L10I-G48V, G48V-L90M, I84V-L90M, L10I-V82A, L10I-L63P, A71V-G73S) and four multiple (L10I-L63P-A71V, L10I-G48V-V82A, G73S-I84V-L90M, L10I-L63P-A71V-G73S-I84V-L90M) SQV-HIV-1 PR mutant complexes, in an attempt to generalize our findings and formulate the main elements of the SQV resistance mechanism in the protease. On the basis of molecular dynamics (MD), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), and ab initio computational approaches, we identified specific features that constitute the HIV-1 PR mechanism of resistance at the molecular level: the low flexibility of SQV in the binding cavity and the preservation of hydrogen bonding (HB) and van der Waals interactions between SQV and several active-site (Gly27/27', Asp29/29'/30/30', especially Asp25/25') and flap (Ile50/50', Gly48/48') residues of the protease contribute significantly to efficient binding. The total enthalpy loss in all mutants is mostly due to the loss in enthalpy of the active-site region. Furthermore, it was observed that mutation accumulation may induce stabilization to SQV and to the flaps through enhanced HB interactions that lead to improved inhibition (e.g., accumulation of mutations in complexes containing L10I, G48V, L63P, I84V, or L90M single mutations). It was also concluded that permanent flap closure is obtained independently of mutations and SQV binding is mostly driven by van der Waals, nonpolar, and exchange-energy contributions. Importantly, it was indicated that the optimal positioning of SQV and the structure of the binding cavity are tightly coupled, since small changes in geometry may affect the binding energy greatly. The results of our theoretical approaches are in agreement with experimental evidence and provide a reliable description of SQV resistance in HIV-1 PR.


Asunto(s)
Farmacorresistencia Viral/genética , Inhibidores de la Proteasa del VIH/farmacología , Proteasa del VIH/química , Proteasa del VIH/genética , Simulación de Dinámica Molecular , Mutación/genética , Farmacorresistencia Viral/efectos de los fármacos , Proteasa del VIH/metabolismo , Enlace de Hidrógeno , Teoría Cuántica , Termodinámica
19.
Chemistry ; 19(47): 15955-63, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24123546

RESUMEN

Static excited-state polarisabilities and hyperpolarisabilities of three Ru(II) ammine complexes are computed at the density functional theory (DFT) and several correlated ab initio levels. Most accurate modelling of the low energy electronic absorption spectrum is obtained with the hybrid functionals B3LYP, B3P86 or M06 for the complex [Ru(II)(NH3)5(MeQ(+))](3+) (MeQ(+)=N-methyl-4,4'-bipyridinium, 3) in acetonitrile. The match with experimental data is less good for [Ru(II)(NH3)5L](3+) (L=N-methylpyrazinium, 2; N-methyl-4-{E,E-4-(4-pyridyl)buta-1,3-dienyl}pyridinium, 4). These calculations confirm that the first dipole- allowed excited state (FDAES) has metal-to-ligand charge-transfer (MLCT) character. Both the solution and gas-phase results obtained for 3 by using B3LYP, B3P86 or M06 are very similar to those from restricted active-space SCF second-order perturbation theory (RASPT2) with a very large basis set and large active space. However, the time-dependent DFT λ(max) predictions from the long-range corrected functionals CAM-B3LYP, LC-ωPBE and wB97XB and also the fully ab initio resolution of identity approximate coupled-cluster method (gas-phase only) are less accurate for all three complexes. The ground state (GS) two-state approximation first hyperpolarisability ß(2SA) for 3 from RASPT2 is very close to that derived experimentally via hyper-Rayleigh scattering, whereas the corresponding DFT-based values are considerably larger. The ß responses calculated by using B3LYP, B3P86 or M06 increase markedly as the π-conjugation extends on moving along the series 2→4, for both the GS and FDAES species. All three functionals predict substantial FDAES ß enhancements for each complex, increasing with the π-conjugation, up to about sevenfold for 4. Also, the computed second hyperpolarisabilities γ generally increase in the FDAES, but the results vary between the different functionals.


Asunto(s)
Complejos de Coordinación/química , Modelos Teóricos , Rutenio/química , Complejos de Coordinación/síntesis química , Gases/química , Ligandos , Teoría Cuántica
20.
J Chem Inf Model ; 53(8): 2141-53, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23834142

RESUMEN

The emergence of HIV-1 drug-resistant mutations is the major problem against AIDS treatment. We employed molecular dynamics (MD) calculations and free energy (MM-PBSA and thermodynamic integration) analyses on wild-type (WT) and mutated HIV-1 protease (HIV-1 PR) complexes with darunavir, amprenavir, indinavir, and saquinavir to clarify the mechanism of resistance due to the I50V flap mutation. Conformational analysis showed that the protease flaps are increasingly flexible in the I50V complexes. In the WT, stabilization of the HIV-1 PR structure is achieved via interflap and water-mediated hydrogen-bonding interactions between the flaps. Furthermore, hydrogen bonds between drugs and binding cavity residues (Asp29/29'/30/30') are crucial for effective inhibition. All these interactions were significantly diminished (or absent) in the mutated forms, thus denoting their importance toward binding. Thermodynamic integration calculations reproduced the experimental data to within ≈1 kcal mol⁻¹ and showed that the I50V mutation results in weaker binding free energies for all analyzed complexes with respect to the WT. It was observed that the loss in binding energy upon mutation was mostly enthalpically driven in all complexes, with the greatest effect coming from the reduction of van der Waals interactions. Our results motivated us to test two novel compounds that have been synthesized to maximize interactions with HIV-1 PR. MM-PBSA and TI calculations showed that compound 3c (Ghosh et al. Bioorg. Med. Chem. Lett. 2012, 22, 2308) is a promising protease inhibitor, which presents very effective binding to the WT PR (ΔG(MM-PBSA) = -17.2 kcal mol⁻¹, ΔG(exp) = -16.1 kcal mol⁻¹). Upon I50V mutation, the complex binding free energy was weakened by a ΔΔG(TI) of 1.8 kcal mol⁻¹, comparable to the marketed inhibitors. This predicts that I50V may confer low resistance to 3c. This computational comparative study contributes toward elucidation of the I50V drug-resistance mechanism in HIV-1 PR.


Asunto(s)
Fármacos Anti-VIH/metabolismo , Farmacorresistencia Viral/genética , Inhibidores de la Proteasa del VIH/metabolismo , Proteasa del VIH/metabolismo , VIH-1/efectos de los fármacos , Simulación de Dinámica Molecular , Mutación , Fármacos Anti-VIH/farmacología , Carbamatos/metabolismo , Carbamatos/farmacología , Análisis por Conglomerados , Darunavir , Furanos , Proteasa del VIH/química , Proteasa del VIH/genética , Inhibidores de la Proteasa del VIH/farmacología , VIH-1/enzimología , VIH-1/genética , Enlace de Hidrógeno , Indinavir/metabolismo , Indinavir/farmacología , Conformación Proteica , Saquinavir/metabolismo , Saquinavir/farmacología , Sulfonamidas/metabolismo , Sulfonamidas/farmacología , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...