Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375367

RESUMEN

This work presents the successful preparation and characterization of polylactide/poly(propylene 2,5-furandicarboxylate) (PLA/PPF) and polylactide/poly(butylene 2,5-furandicarboxylate) (PLA/PBF) blends in form of bulk and fiber samples and investigates the influence of poly(alkylene furanoate) (PAF) concentration (0 to 20 wt%) and compatibilization on the physical, thermal, and mechanical properties. Both blend types, although immiscible, are successfully compatibilized by Joncryl (J), which improves the interfacial adhesion and reduces the size of PPF and PBF domains. Mechanical tests on bulk samples show that only PBF is able to effectively toughen PLA, as PLA/PBF blends with 5-10 wt% PBF showed a distinct yield point, remarkable necking propagation, and increased strain at break (up to 55%), while PPF did not show significant plasticizing effects. The toughening ability of PBF is attributed to its lower glass transition temperature and greater toughness than PPF. For fiber samples, increasing the PPF and PBF amount improves the elastic modulus and mechanical strength, particularly for PBF-containing fibers collected at higher take-up speeds. Remarkably, in fiber samples, plasticizing effects are observed for both PPF and PBF, with significantly higher strain at break values compared to neat PLA (up to 455%), likely due to a further microstructural homogenization, enhanced compatibility, and load transfer between PLA and PAF phases following the fiber spinning process. SEM analysis confirms the deformation of PPF domains, which is probably due to a "plastic-rubber" transition during tensile testing. The orientation and possible crystallization of PPF and PBF domains contribute to increased tensile strength and elastic modulus. This work showcases the potential of PPF and PBF in tailoring the thermo-mechanical properties of PLA in both bulk and fiber forms, expanding their applications in the packaging and textile industry.

2.
Polymers (Basel) ; 15(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37376353

RESUMEN

This work aimed to produce bio-based poly(ethylene furanoate) (PEF) with a high molecular weight using 2,5-furan dicarboxylic acid (FDCA) or its derivative dimethyl 2,5-furan dicarboxylate (DMFD), targeting food packaging applications. The effect of monomer type, molar ratios, catalyst, polycondensation time, and temperature on synthesized samples' intrinsic viscosities and color intensity was evaluated. It was found that FDCA is more effective than DMFD in producing PEF with higher molecular weight. A sum of complementary techniques was employed to study the structure-properties relationships of the prepared PEF samples, both in amorphous and semicrystalline states. The amorphous samples exhibited an increase in glass transition temperature of 82-87 °C, and annealed samples displayed a decrease in crystallinity with increasing intrinsic viscosity, as analyzed by differential scanning calorimetry and X-ray diffraction. Dielectric spectroscopy showed moderate local and segmental dynamics and high ionic conductivity for the 2,5-FDCA-based samples. The spherulite size and nuclei density of samples improved with increased melt crystallization and viscosity, respectively. The hydrophilicity and oxygen permeability of the samples were reduced with increased rigidity and molecular weight. The nanoindentation test showed that the hardness and elastic modulus of amorphous and annealed samples is higher at low viscosities due to high intermolecular interactions and degree of crystallinity.

3.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36904437

RESUMEN

Poly(lactic acid) (PLA) is considered the most promising biobased substitute for fossil-derived polymers due to its compostability, biocompatibility, renewability, and good thermomechanical properties. However, PLA suffers from several shortcomings, such as low heat distortion temperature, thermal resistance, and rate of crystallization, whereas some other specific properties, i.e., flame retardancy, anti-UV, antibacterial or barrier properties, antistatic to conductive electrical characteristics, etc., are required by different end-use sectors. The addition of different nanofillers represents an attractive way to develop and enhance the properties of neat PLA. Numerous nanofillers with different architectures and properties have been investigated, with satisfactory achievements, in the design of PLA nanocomposites. This review paper overviews the current advances in the synthetic routes of PLA nanocomposites, the imparted properties of each nano-additive, as well as the numerous applications of PLA nanocomposites in various industrial fields.

4.
Polymers (Basel) ; 14(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36365718

RESUMEN

Poly(lactic acid) (PLA) is a readily available, compostable biobased polyester with high strength and toughness, and it is excellent for 3D printing applications. Polymer blending is an economic and easy way to improve its properties, such as its slow degradation and crystallization rates and its small elongation, and thus, make it more versatile. In this work, the effects of different 2,5-furan dicarboxylic acid (FDCA)-based polyesters on the physicochemical and mechanical properties of PLA were studied. Poly(butylene furan 2,5-dicarboxylate) (PBF) and its copolymers with poly(butylene adipate) (PBAd) were synthesized in various comonomer ratios and were blended with 70 wt% PLA using melt compounding. The thermal, morphological and mechanical properties of the blends are investigated. All blends were immiscible, and the presence of the dispersed phases improved the crystallization ability of PLA. Mechanical testing revealed the plasticization of PLA after blending, and a small but measurable mass loss after burying in soil for 7 months. Reactive blending was evaluated as a compatibilizer-free method to improve miscibility, and it was found that when the thermal stability of the blend components allowed it, some transesterification reactions occurred between the PLA matrix and the FDCA-based dispersed phase after 20 min at 250 °C.

5.
Pharmaceutics ; 14(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36015319

RESUMEN

In the current work, a series of PCL polyesters with different molecular weights was synthesized and used for the fabrication of nanofibrous patches via electrospinning, as sustained release matrices for leflunomide's active metabolite, teriflunomide (TFL). The electrospinning conditions for each sample were optimized and it was found that only one material with high Mn (71,000) was able to produce structures with distinct fibers devoid of the presence of beads. The successful preparation of the fibers was determined by scanning electron microscopy (SEM).TFL (10, 20 and 30 wt%) in three different concentrations was incorporated into the prepared nanofibers, which were used in in vitro drug release experiments. The drug-loaded nanofibrous formulations were further characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder X-ray diffractometry (XRD).It was found that TFL was incorporated in an amorphous form inside the polymeric nanofibers and that significant molecular interactions were formed between the drug and the polyester. Additionally, in vitro dissolution studies showed that the PCL/TFL-loaded nanofibers exhibit a biphasic release profile, having an initial burst release phase, followed by a sustained release until 250 h. Finally, a kinetic analysis of the obtained profiles revealed that the drug release was directly dependent on the amount TFL incorporated into the nanofibers.

6.
Polymers (Basel) ; 13(7)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805314

RESUMEN

The industrialisation of poly(ethylene 2,5-furandicarboxylate) for total replacement of poly(ethylene terephthalate) in the polyester market is under question. Preparation of high-performing polymer blends is a well-established strategy for tuning the properties of certain homopolymers and create tailor-made materials to meet the demands for a number of applications. In this work, the structure, thermal properties and the miscibility of a series of poly(ethylene terephthalate)/poly(ethylene 2,5-furandicarboxylate) (PET/PEF) blends have been studied. A number of thermal treatments were followed in order to examine the thermal transitions, their dynamic state and the miscibility characteristics for each blend composition. Based on their glass transition temperatures and melting behaviour the PET/PEF blends are miscible at high and low poly(ethylene terephthalate) (PET) contents, while partial miscibility was observed at intermediate compositions. The multiple melting was studied and their melting point depression was analysed with the Flory-Huggins theory. In an attempt to further improve miscibility, reactive blending was also investigated.

7.
Materials (Basel) ; 13(21)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143165

RESUMEN

In the era of polymers from renewable resources, polyesters derived from 2,5 furan dicarboxylic acid (FDCA) have received increasing attention due to their outstanding features. To commercialize them, it is necessary to synthesize high molecular weight polymers through efficient and simple methods. In this study, two furan-based polyesters, namely poly (propylene furanoate) (PPF) and poly(butylene furanoate) (PBF), were synthesized with the conventional two-step melt polycondensation, followed by solid-state polycondensation (SSP) conducted at different temperatures and reaction times. Molecular weight, structure and thermal properties were measured for all resultant polyesters. As expected, increasing SSP time and temperature results in polymers with increased intrinsic viscosity (IV), increased molecular weight and reduced carboxyl end-group content. Finally, those results were used to generate a simple mathematical model that prognosticates the time evolution of the materials' IV and end groups concentration during SSP.

8.
J Phys Chem B ; 124(33): 7306-7317, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32786716

RESUMEN

This study deals with poly(butylene 2,5-furan-dicarboxylate), PBF, a renewable bio-based polyester expected to replace non-eco-friendly fossil-based homologues. PBF exhibits excellent gas barrier properties, which makes it promising for packaging applications; however, its rather low and slow crystallinity affects good mechanical performance. The crystallization of this relatively new polymer is enhanced here via reinforcement by introduction in situ of 1 wt % montmorillonite, MMT, nanoclays of three types (functionalizations). We study PBF and its nanocomposites (PNCs) also from the basic research point of view, molecular dynamics. For this work, we employ the widely used combination of techniques, differential scanning calorimetry (DSC) with broad-band dielectric relaxation spectroscopy (BDS), supplemented by polarized light microscopy (PLM) and thermogravimetric analysis (TGA). In the PNCs, the crystalline rate and fraction, CF, were found to be strongly enhanced as these fillers act as additional crystallization nuclei. The improvements in crystallization here correlate quite well with those on the mechanical performance recorded recently; moreover, they occur in the same filler order, in particular, with increasing MMT interlayer distance (from ∼1 to ∼3 nm). In the amorphous fraction of the polymer, the chain diffusion (calorimetric Tg and dynamic α process) is easier in the PNCs due to their slightly smaller length, while in the semicrystalline state, it decelerates by crystal-induced constraints. The local polymer dynamics (ß process, below Tg) was found to be independent of the PNC composition, however, sensitive to structural changes of the matrix. Finally, a filler-induced dynamics was additionally recorded in the PNCs (α* process), arising possibly from the polymer located at the MMT surfaces. α* follows the changes in polymer chain length and decelerates with crystallization, whereas its activation energy decreases with mild hydration. The combined results on α* with the DSC and TGA findings, provide proof for weak MMT-PBF interactions. Overall, our results, along with data from the literature, suggest that such furan-based polyesters reinforced with properly chosen nanofillers could potentially serve well as tailor-made PNCs for targeted applications.

9.
Polymers (Basel) ; 12(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485937

RESUMEN

Poly(hexylene 2,5 furan-dicarboxylate) (PHF) is a relatively new biobased polyester prepared from renewable resources, which is targeted for use in food packaging applications, owing to its great mechanical and gas barrier performance. Since both properties are strongly connected to crystallinity, the latter is enhanced here by the in situ introduction in PHF of graphene nanoplatelets and fumed silica nanoparticles, as well as mixtures of both, at low amounts. For this investigation, we employed Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and dielectric spectroscopy (BDS). The fillers were found to improve crystallization in both the rate (increasing Tc) and fraction (CF), which was rationalized via the concept of fillers acting as crystallization agents. This action was found stronger in the case of graphene as compared to silica. BDS allowed the detection of local and segmental dynamics, in particular in PHF for the first time. The glass transition dynamics in both BDS (α relaxation) and DSC (Tg) are mainly dominated by the relatively high CF, whereas in the PHF filled uniquely with silica strong spatial confinement effects due to crystals were revealed. Finally, all samples demonstrated the segmental-like dynamics above Tg, which screens the global chain dynamics (normal mode).

10.
Polymers (Basel) ; 12(6)2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32466455

RESUMEN

Polyesters based on 2,5-furandicarboxylic acid (FDCA) are a new class of biobased polymers with enormous interest, both from a scientific and industrial perspective. The commercialization of these polymers is imminent as the pressure for a sustainable economy grows, and extensive worldwide research currently takes place on developing cost-competitive, renewable plastics. The most prevalent method for imparting these polymers with new properties is copolymerization, as many studies have been published over the last few years. This present review aims to summarize the trends in the synthesis of FDCA-based copolymers and to investigate the effectiveness of this approach in transforming them to a more versatile class of materials that could potentially be appropriate for a number of high-end and conventional applications.

11.
Polymers (Basel) ; 12(1)2020 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963284

RESUMEN

Intending to expand the thermo-physical properties of bio-based polymers, furan-based thermoplastic polyesters were synthesized following the melt polycondensation method. The resulting polymers, namely, poly(ethylene 2,5-furandicarboxylate) (PEF), poly(propylene 2,5-furandicarboxylate) (PPF), poly(butylene 2,5-furandicarboxylate) (PBF) and poly(1,4-cyclohexanedimethylene 2,5-furandicarboxylate) (PCHDMF) are used in blends together with various polymers of industrial importance, including poly(ethylene terephthalate) (PET), poly(ethylene 2,6-naphthalate) (PEN), poly(L-lactic acid) (PLA) and polycarbonate (PC). The blends are studied concerning their miscibility, crystallization and solid-state characteristics by using wide-angle X-ray diffractometry (WAXD), differential scanning calorimetry (DSC) and polarized light microscopy (PLM). PEF blends show in general dual glass transitions in the DSC heating traces for the melt quenched samples. Only PPF-PEF blends show a single glass transition and a single melt phase in PLM. PPF forms immiscible blends except with PEF and PBF. PBF forms miscible blends with PCHDMF and PPF, whereas all other blends show dual glass transitions in DSC and phase separation in PLM. PCHDMF-PEF and PEN-PEF blends show two glass transition temperatures, but they shift to intermediate temperature values depending on the composition, indicating some partial miscibility of the polymer pairs.

12.
Polymers (Basel) ; 11(10)2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31615018

RESUMEN

Plastics are perceived as modern and versatile materials, but their use is linked to numerous environmental issues as their production is based on finite raw materials (petroleum or natural gas). Additionally, their low biodegradability results in the accumulation of microplastics. As a result, there is extensive interest in the production of new, environmentally friendly, bio-based and biodegradable polymers. In this context, poly(ethylene vanillate) (PEV) has a great potential as a potentially bio-based alternative to poly(ethylene terephthalate); however, it has not yet been extensively studied. In the present work, the preparation of PEV is reported. The enthalpy and the entropy of fusion of the pure crystalline PEV have been estimated for the first time. Additionally, the equilibrium melting temperature has also been calculated. Furthermore, the isothermal and non-isothermal crystallization behavior are reported in detail, and new insights on the thermal stability and degradation mechanism of PEV are given.

13.
Polymers (Basel) ; 11(6)2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31146490

RESUMEN

Poly(butylene 2,5-furandicarboxylate) (PBF) constitutes a new engineering polyester produced from renewable resources, as it is synthesized from 2,5-furandicarboxylic acid (2,5-FDCA) and 1,4-butanediol (1,4-BD), both formed from sugars coming from biomass. In this research, initially high-molecular-weight PBF was synthesized by applying the melt polycondensation method and using the dimethylester of FDCA as the monomer. Furthermore, five different series of PBF blends were prepared, namely poly(l-lactic acid)-poly(butylene 2,5-furandicarboxylate) (PLA-PBF), poly(ethylene terephthalate)-poly(butylene 2,5-furandicarboxylate) (PET-PBF), poly(propylene terephthalate)-poly(butylene 2,5-furandicarboxylate) (PPT-PBF), poly(butylene 2,6-naphthalenedicarboxylate)-poly(butylene 2,5-furandicarboxylate) (PBN-PBF), and polycarbonate-poly(butylene 2,5-furandicarboxylate) (PC-PBF), by dissolving the polyesters in a trifluoroacetic acid/chloroform mixture (1/4 v/v) followed by coprecipitation as a result of adding the solutions into excess of cold methanol. The wide-angle X-ray diffraction (WAXD) patterns of the as-prepared blends showed that mixtures of crystals of the blend components were formed, except for PC which did not crystallize. In general, a lower degree of crystallinity was observed at intermediate compositions. The differential scanning calorimetry (DSC) heating scans for the melt-quenched samples proved homogeneity in the case of PET-PBF blends. In the remaining cases, the blend components showed distinct Tgs. In PPT-PBF blends, there was a shift of the Tgs to intermediate values, showing some partial miscibility. Reactive blending proved to improve compatibility of the PBN-PBF blends.

14.
Molecules ; 24(9)2019 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-31052603

RESUMEN

Bio-based polyesters are a new class of materials that are expected to replace their fossil-based homologues in the near future. In this work, poly(propylene 2,5-furandicarboxylate) (PPF) nanocomposites with graphene nanoplatelets were prepared via the in-situ melt polycondensation method. The chemical structure of the resulting polymers was confirmed by 1H-NMR spectroscopy. Thermal stability, decomposition kinetics and the decomposition mechanism of the PPF nanocomposites were studied in detail. According to thermogravimetric analysis results, graphene nanoplatelets did nοt affect the thermal stability of PPF at levels of 0.5, 1.0 and 2.5 wt.%, but caused a slight increase in the activation energy values. Pyrolysis combined with gas chromatography and mass spectroscopy revealed that the decomposition mechanism of the polymer was not altered by the presence of graphene nanoplatelets but the extent of secondary homolytic degradation reactions was increased.


Asunto(s)
Alquenos/química , Grafito/química , Nanocompuestos/química , Polímeros/química , Cinética , Espectroscopía de Resonancia Magnética , Polímeros/síntesis química , Termodinámica
15.
Molecules ; 24(10)2019 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-31126104

RESUMEN

Polypropylene composites reinforced with a filler mixture of graphene nanoplatelet-glass fiber were prepared by melt mixing, while conventional composites containing graphene nanoplatelet and glass fiber were prepared for comparative reasons. An extensive study of thermally stimulated processes such as crystallization, nucleation, and kinetics was carried out using Differential Scanning Calorimetry and Thermogravimetric Analysis. Moreover, effective activation energy and kinetic parameters of the thermal decomposition process were determined by applying Friedman's isoconversional differential method and multivariate non-linear regression method. It was found that the graphene nanoplatelets act positively towards the increase in crystallization rate and nucleation phenomena under isothermal conditions due to their large surface area, inherent nucleation activity, and high filler content. Concerning the thermal degradation kinetics of polypropylene graphene nanoplatelets/glass fibers composites, a change in the decomposition mechanism of the matrix was found due to the presence of graphene nanoplatelets. The effect of graphene nanoplatelets dominates that of the glass fibers, leading to an overall improvement in performance.


Asunto(s)
Vidrio/química , Grafito/química , Polipropilenos/química , Rastreo Diferencial de Calorimetría , Cristalización , Cinética , Materiales Manufacturados , Ensayo de Materiales , Termodinámica
16.
Polymers (Basel) ; 11(3)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30960422

RESUMEN

In this study, the synthesis of poly(ethylene furanoate) (PEF), catalyzed by five different catalysts-antimony acetate (III) (Sb Ac), zirconium (IV) isopropoxide isopropanal (Zr Is Ip), antimony (III) oxide (Sb Ox), zirconium (IV) 2,4-pentanedionate (Zr Pe) and germanium (IV) oxide (Ge Ox)-via an industrially common combination of melt polymerization and subsequent solid-state polymerization (SSP) is presented. In all reactions, proper amounts of 2,5-dimethylfuran-dicarboxylate (DMFD) and ethylene glycol (EG) in a molar ratio of DMFD/EG= 1/2 and 400 ppm of catalyst were used. Polyester samples were subjected to SSP procedure, under vacuum application, at different reaction times (1, 2, 3.5, and 5 h) and temperatures of 190, 200, and 205 °C. Carboxyl end-groups concentration (⁻COOH), intrinsic viscosity (IV), and thermal properties, via differential scanning calorimetry (DSC), were measured for all resultant polymers to study the effect of the used catalysts on the molecular weight increase of PEF during SSP process. As was expected, it was found that with increasing the SSP time and temperature, the intrinsic viscosity and the average molecular weight of PEF steadily increased. In contrast, the number of carboxyl end-groups content showed the opposite trend as intrinsic viscosity, that is, gradually decreasing during SSP time and temperature increase. It is worthy to note that thanks to the SSP process an obvious and continuous enhancement in the thermal properties of the prepared PEF samples was attained, in which their melting temperatures (Tm) and degree of crystallinity (Xc) increase progressively with increasing of reaction time and temperature. To predict the time evolution of polymers IV, as well as the hydroxyl and carboxyl content of PEF polyesters during the SSP, a simple kinetic model was developed. From both the theoretical simulation results and the experimental measurements, it was demonstrated that surely the Zr Is Ip catalyst shows the best catalytic characteristics compared to all other used catalysts herein, that is, leading in reducing-in a spectacular way-the activation energy of the involved both transesterification and esterification reactions during SSP.

17.
Polymers (Basel) ; 11(3)2019 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-30960540

RESUMEN

Polymers from renewable resources and especially strong engineering partially aromatic biobased polyesters are of special importance for the evolution of bioeconomy. The fabrication of polymer blends is a creative method for the production of tailor-made materials for advanced applications that are able to combine functionalities from both components. In this study, poly(alkylene furanoate)/poly(alkylene terephthalate) blends with different compositions were prepared by solution blending in a mixture of trifluoroacetic acid and chloroform. Three different types of blends were initially prepared, namely, poly(ethylene furanoate)/poly(ethylene terephthalate) (PEF/PET), poly(propylene furanoate)/poly(propylene terephthalate) (PPF/PPT), and poly(1,4-cyclohenedimethylene furanoate)/poly(1,4-cycloxehane terephthalate) (PCHDMF/PCHDMT). These blends' miscibility characteristics were evaluated by examining the glass transition temperature of each blend. Moreover, reactive blending was utilized for the enhancement of miscibility and dynamic homogeneity and the formation of copolymers through transesterification reactions at high temperatures. PEF⁻PET and PPF⁻PPT blends formed a copolymer at relatively low reactive blending times. Finally, poly(ethylene terephthalate-co-ethylene furanoate) (PETF) random copolymers were successfully introduced as compatibilizers for the PEF/PET immiscible blends, which resulted in enhanced miscibility.

18.
Polymers (Basel) ; 10(3)2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-30966331

RESUMEN

α and ß crystalline phases of poly(ethylene furanoate) (PEF) were determined using X-ray powder diffraction by structure resolution in direct space and Rietveld refinement. Moreover, the α' structure of a PEF sample was refined from data previously reported for PEF fiber. Triclinic α-PEF a = 5.729 Å, b = 7.89 Å, c = 9.62 Å, α = 98.1°, ß = 65.1°, γ = 101.3°; monoclinic α'-PEF a = 5.912 Å, b = 6.91 Å, c = 19.73 Å, α = 90°, ß = 90°, γ = 104.41°; and monoclinic ß-PEF a = 5.953 Å, b = 6.60 Å, c = 10.52 Å, α = 90°, ß = 107.0°, γ = 90° were determined as the best fitting of X-ray diffraction (XRD) powder patterns. Final atomic coordinates are reported for all polymorphs. In all cases PEF chains adopted an almost planar configuration.

19.
Polymers (Basel) ; 10(5)2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-30966505

RESUMEN

The goal of this study was to synthesize, through a facile strategy, high molecular weight poly(ethylene furanoate) (PEF), which could be applicable in food packaging applications. The efficient method to generate PEF with high molecular weight consists of carrying out a first solid-state polycondensation under vacuum for 6 h reaction time at 205 °C for the resulting polymer from two-step melt polycondensation process, which is catalyzed by tetrabutyl titanate (TBT). A remelting step was thereafter applied for 15 min at 250 °C for the obtained polyester. Thus, the PEF sample was ground into powder, and was then crystallized for 6 h at 170 °C. This polyester is then submitted to a second solid-state polycondensation (SSP) carried out at different reaction times (1, 2, 3.5, and 5 h) and temperatures 190, 200, and 205 °C, under vacuum. Ultimately, a significant increase in intrinsic viscosity is observed with only 5 h reaction time at 205 °C during the second SSP being needed to obtain very high molecular weight PEF polymer greater than 1 dL/g, which sufficient for manufacturing purposes. Intrinsic viscosity (IV), carboxyl end-group content (⁻COOH), and thermal properties, via differential scanning calorimetry (DSC), were measured for all resultant polyesters. Thanks to the post-polymerization process, DSC results showed that the melting temperatures of the prepared PEF samples were steadily enhanced in an obvious way as a function of reaction time and temperature increase. It was revealed, as was expected for all SSP samples, that the intrinsic viscosity and the average molecular weight of PEF polyester increased with increasing SSP time and temperature, whereas the number of carboxyl end-group concentration was decreased. A simple kinetic model was also developed and used to predict the time evolution of polyesters IV, as well as the carboxyl and hydroxyl end-groups of PEF during the SSP.

20.
Polymers (Basel) ; 10(9)2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30960862

RESUMEN

Poly(propylene 2,5-furan dicarboxylate) (PPF), or poly(trimethylene 2,5-furan dicarboxylate) (PTF), is a biobased alipharomatic polyester that is expected to replace its fossil-based terephthalate (PPT) and naphthate (PPN) homologues. PPF possesses exceptional gas barrier properties, but its slow crystallization rate might affect its success in specific applications in the future. Therefore, a series of PPF based nanocomposites with the nanoclays Cloisite®-Na (MMT), Cloisite®-20A (MMT 20A), and halloysite nanotubes (HNT) were synthesized via the in situ transterification and polycondensation method. The effect of the nanoclays on the structure, thermal, and crystallization properties of PPF was studied with several methods including infrared spectroscopy (IR), Nuclear Resonance Spectroscopy (¹H-NMR), Wide Angle X-ray Diffraction (WAXD), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC). The insertion of the nanofillers in the polymer matrix altered the crystallization rates, and TGA results showed good thermal stability, since no significant mass loss occurred up to 300 °C. Finally, the degradation mechanism was studied in depth with Pyrolysis-Gas Chromatography/Mass Spectroscopy, and it was found that ß-scission is the dominant degradation mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...