Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nat Commun ; 14(1): 6853, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891329

RESUMEN

Although the gut microbiota has been reported to influence osteoporosis risk, the individual species involved, and underlying mechanisms, remain largely unknown. We performed integrative analyses in a Chinese cohort of peri-/post-menopausal women with metagenomics/targeted metabolomics/whole-genome sequencing to identify novel microbiome-related biomarkers for bone health. Bacteroides vulgatus was found to be negatively associated with bone mineral density (BMD), which was validated in US white people. Serum valeric acid (VA), a microbiota derived metabolite, was positively associated with BMD and causally downregulated by B. vulgatus. Ovariectomized mice fed B. vulgatus demonstrated increased bone resorption and poorer bone micro-structure, while those fed VA demonstrated reduced bone resorption and better bone micro-structure. VA suppressed RELA protein production (pro-inflammatory), and enhanced IL10 mRNA expression (anti-inflammatory), leading to suppressed maturation of osteoclast-like cells and enhanced maturation of osteoblasts in vitro. The findings suggest that B. vulgatus and VA may represent promising targets for osteoporosis prevention/treatment.


Asunto(s)
Resorción Ósea , Microbioma Gastrointestinal , Osteoporosis , Humanos , Femenino , Ratones , Animales
2.
Hum Genomics ; 17(1): 11, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36793138

RESUMEN

BACKGROUND: While transcription factor (TF) regulation is known to play an important role in osteoblast development, differentiation, and bone metabolism, the molecular features of TFs in human osteoblasts at the single-cell resolution level have not yet been characterized. Here, we identified modules (regulons) of co-regulated genes by applying single-cell regulatory network inference and clustering to the single-cell RNA sequencing profiles of human osteoblasts. We also performed cell-specific network (CSN) analysis, reconstructed regulon activity-based osteoblast development trajectories, and validated the functions of important regulons both in vivo and in vitro. RESULTS: We identified four cell clusters: preosteoblast-S1, preosteoblast-S2, intermediate osteoblasts, and mature osteoblasts. CSN analysis results and regulon activity-based osteoblast development trajectories revealed cell development and functional state changes of osteoblasts. CREM and FOSL2 regulons were mainly active in preosteoblast-S1, FOXC2 regulons were mainly active in intermediate osteoblast, and RUNX2 and CREB3L1 regulons were most active in mature osteoblasts. CONCLUSIONS: This is the first study to describe the unique features of human osteoblasts in vivo based on cellular regulon active landscapes. Functional state changes of CREM, FOSL2, FOXC2, RUNX2, and CREB3L1 regulons regarding immunity, cell proliferation, and differentiation identified the important cell stages or subtypes that may be predominantly affected by bone metabolism disorders. These findings may lead to a deeper understanding of the mechanisms underlying bone metabolism and associated diseases.


Asunto(s)
Osteoblastos , Regulón , Humanos , Diferenciación Celular/genética , Regulación de la Expresión Génica , Osteoblastos/metabolismo , Regulón/genética
3.
J Clin Endocrinol Metab ; 106(8): e3159-e3177, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33693744

RESUMEN

CONTEXT: Although metabolic profiles appear to play an important role in menopausal bone loss, the functional mechanisms by which metabolites influence bone mineral density (BMD) during menopause are largely unknown. OBJECTIVE: We aimed to systematically identify metabolites associated with BMD variation and their potential functional mechanisms in peri- and postmenopausal women. DESIGN AND METHODS: We performed serum metabolomic profiling and whole-genome sequencing for 517 perimenopausal (16%) and early postmenopausal (84%) women aged 41 to 64 years in this cross-sectional study. Partial least squares regression and general linear regression analysis were applied to identify BMD-associated metabolites, and weighted gene co-expression network analysis was performed to construct co-functional metabolite modules. Furthermore, we performed Mendelian randomization analysis to identify causal relationships between BMD-associated metabolites and BMD variation. Finally, we explored the effects of a novel prominent BMD-associated metabolite on bone metabolism through both in vivo/in vitro experiments. RESULTS: Twenty metabolites and a co-functional metabolite module (consisting of fatty acids) were significantly associated with BMD variation. We found dodecanoic acid (DA), within the identified module causally decreased total hip BMD. Subsequently, the in vivo experiments might support that dietary supplementation with DA could promote bone loss, as well as increase the osteoblast and osteoclast numbers in normal/ovariectomized mice. Dodecanoic acid treatment differentially promoted osteoblast and osteoclast differentiation, especially for osteoclast differentiation at higher concentrations in vitro (eg,10, 100 µM). CONCLUSIONS: This study sheds light on metabolomic profiles associated with postmenopausal osteoporosis risk, highlighting the potential importance of fatty acids, as exemplified by DA, in regulating BMD.


Asunto(s)
Densidad Ósea/fisiología , Ácidos Láuricos/sangre , Osteoporosis Posmenopáusica/diagnóstico por imagen , Posmenopausia/sangre , Absorciometría de Fotón , Adulto , Animales , Biomarcadores/sangre , Línea Celular , China , Estudios Transversales , Femenino , Humanos , Metaboloma , Ratones , Persona de Mediana Edad , Osteogénesis/fisiología , Osteoporosis Posmenopáusica/sangre
4.
Artículo en Inglés | MEDLINE | ID: mdl-29263935

RESUMEN

Although systemic inflammatory responses attributable to infection may lead to significant lung injury, the precise molecular mechanisms leading to lung damage are poorly understood and therapeutic options remain limited. Here, we show that myeloid monocyte chemotactic protein-inducible protein 1 (MCPIP1) plays a central role in protecting against LPS-induced inflammation and lung injury. Myeloid-specific MCPIP1 knockout mice developed spontaneous inflammatory syndromes, but at a late age compared to global MCPIP1 knockout mice. Moreover, mice with a myeloid-specific deletion of MCPIP1 were extremely sensitive to LPS-induced lung injury due to overproduction of proinflammatory cytokines and chemokines. We identified C/EBPß and C/EBPδ, two critical transcriptional factors that drive cytokine production and lung injury, as targets of MCPIP1 RNase. LPS administration caused MCPIP1 protein degradation in the lungs. Pharmacological inhibition of MALT1, a paracaspase that cleaves MCPIP1, by MI-2 selectively increased the MCPIP1 protein levels in macrophages and in the lungs. Meanwhile, administration of MI-2 protected mice from LPS-induced inflammation, lung injury and death. Collectively, these results indicate that myeloid MCPIP1 is central in controlling LPS-induced inflammation and lung injury. Pharmacological inhibition of MALT1 protease activity may be a good strategy to treat inflammatory diseases by enhancing MCPIP1 expression in myeloid cells.

5.
Gigascience ; 6(8): 1-12, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28873967

RESUMEN

The human gut microbiome can modulate metabolic health and affect insulin resistance, and it may play an important role in the etiology of gestational diabetes mellitus (GDM). Here, we compared the gut microbial composition of 43 GDM patients and 81 healthy pregnant women via whole-metagenome shotgun sequencing of their fecal samples, collected at 21-29 weeks, to explore associations between GDM and the composition of microbial taxonomic units and functional genes. A metagenome-wide association study identified 154 837 genes, which clustered into 129 metagenome linkage groups (MLGs) for species description, with significant relative abundance differences between the 2 cohorts. Parabacteroides distasonis, Klebsiella variicola, etc., were enriched in GDM patients, whereas Methanobrevibacter smithii, Alistipes spp., Bifidobacterium spp., and Eubacterium spp. were enriched in controls. The ratios of the gross abundances of GDM-enriched MLGs to control-enriched MLGs were positively correlated with blood glucose levels. A random forest model shows that fecal MLGs have excellent discriminatory power to predict GDM status. Our study discovered novel relationships between the gut microbiome and GDM status and suggests that changes in microbial composition may potentially be used to identify individuals at risk for GDM.


Asunto(s)
Diabetes Gestacional/etiología , Microbioma Gastrointestinal , Metagenoma , Metagenómica , Biomarcadores , Glucemia , Análisis por Conglomerados , Femenino , Humanos , Metagenómica/métodos , Modelos Biológicos , Embarazo , Curva ROC
6.
J Bone Miner Metab ; 35(6): 649-658, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28012008

RESUMEN

Several studies indicated bone mineral density (BMD) and alcohol intake might share common genetic factors. The study aimed to explore potential SNPs/genes related to both phenotypes in US Caucasians at the genome-wide level. A bivariate genome-wide association study (GWAS) was performed in 2069 unrelated participants. Regular drinking was graded as 1, 2, 3, 4, 5, or 6, representing drinking alcohol never, less than once, once or twice, three to six times, seven to ten times, or more than ten times per week respectively. Hip, spine, and whole body BMDs were measured. The bivariate GWAS was conducted on the basis of a bivariate linear regression model. Sex-stratified association analyses were performed in the male and female subgroups. In males, the most significant association signal was detected in SNP rs685395 in DYNC2H1 with bivariate spine BMD and alcohol drinking (P = 1.94 × 10-8). SNP rs685395 and five other SNPs, rs657752, rs614902, rs682851, rs626330, and rs689295, located in the same haplotype block in DYNC2H1 were the top ten most significant SNPs in the bivariate GWAS in males. Additionally, two SNPs in GRIK4 in males and three SNPs in OPRM1 in females were suggestively associated with BMDs (of the hip, spine, and whole body) and alcohol drinking. Nine SNPs in IL1RN were only suggestively associated with female whole body BMD and alcohol drinking. Our study indicated that DYNC2H1 may contribute to the genetic mechanisms of both spine BMD and alcohol drinking in male Caucasians. Moreover, our study suggested potential pleiotropic roles of OPRM1 and IL1RN in females and GRIK4 in males underlying variation of both BMD and alcohol drinking.


Asunto(s)
Consumo de Bebidas Alcohólicas/genética , Densidad Ósea/genética , Pleiotropía Genética , Estudio de Asociación del Genoma Completo , Población Blanca/genética , Adulto , Femenino , Haplotipos/genética , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple/genética
7.
Sci Rep ; 6: 38975, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27941911

RESUMEN

Adiporedoxin (Adrx) is a recently discovered redox regulatory protein that is preferentially expressed in adipose tissue and plays a critical role in the regulation of metabolism via its modulation of adipocyte protein secretion. We here report that Adrx suppresses endothelial cell activation via inhibiting MAPK and NF-kB signaling pathways. Adrx is constitutively expressed in human vascular endothelial cells, and significantly induced by a variety of stimuli such as TNFα, IL-1ß, H2O2 and OxLDL. Overexpression of Adrx significantly attenuated TNFα-induced expression of VCAM-1 and ICAM-1, and thus reduced monocyte adherence to human umbilical vein endothelial cells (HUVECs). Conversely, siRNA-mediated knockdown of Adrx increased TNFα-induced expression of adhesion molecules and monocyte adherence to HUVECs. Furthermore, forced expression of Adrx decreased TNFα-induced activation of ERK1/2, JNK, p38 and IKKs in HUVECs. Adrx mutant in the CXXC motif that lost its anti-redox activity is less efficient than the wild-type Adrx, suggesting that Adrx-mediated inhibition of endothelial activation is partially dependent on its antioxidant activity. Finally, Adrx expression was markedly increased in human atheroma compared with normal tissue from the same carotid arteries. These results suggest that Adrx is an endogenous inhibitor of endothelial activation, and might be a therapeutic target for vascular inflammatory diseases.


Asunto(s)
Células Endoteliales/metabolismo , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Peroxirredoxinas , Arterias/metabolismo , Adhesión Celular , Línea Celular , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Monocitos/metabolismo , Placa Aterosclerótica/metabolismo , ARN Mensajero/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
8.
Sci Rep ; 6: 36666, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27827448

RESUMEN

Symbiotic gut microbiota is essential for human health, and its compositional changes have been associated with various complex disorders. However, systematic investigation of the acquisition and development of gut microbial communities during early infancy are relatively rare, particularly for infants from non-Western countries. In this study, we characterize the colonization and development of infant microbiota in healthy Chinese infants and compare the pattern with those from other countries. The fecal microbiota of 2-month-old infants was considerably more diverse than that of neonates, as indicated by higher relative abundances of Veillonella, Clostridium, Bacteroides, Lactobacillus, Collinsella and Prevotella, and reduction of Escherichia and Enterococcus. The fecal microbiota of vaginally delivered infants (both neonates and 2-month-old) had significant enrichment of Bacteroides, Parabacteroides and Megamonas, whereas cesarean delivered infants had enrichment of Prevotella, Streptococcus and Trabulsiella. By global comparison, we identify three different enterotypes, referred as "P-type", "A-type "and "F-type" which were highly abundant in Proteobacteria, Actinobacteria and Firmicutes, respectively. The three enterotypes' compositons vary geographically. All Chinese infants in our study belong to the P-type. These findings may provide novel insights into our understanding of the establishment of infant fecal bacterial communities.


Asunto(s)
Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Microbioma Gastrointestinal/fisiología , Pueblo Asiatico , Femenino , Humanos , Lactante , Recién Nacido , Masculino
9.
Bone ; 91: 1-10, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27397699

RESUMEN

Aiming to identify genomic variants associated with osteoporosis, we performed a genome-wide association meta-analysis of bone mineral density (BMD) at Ward's triangle of the hip in 7175 subjects from 6 samples. We performed in silico replications with femoral neck, trochanter, and inter-trochanter BMDs in 6912 subjects from the Framingham heart study (FHS), and with forearm, femoral neck and lumbar spine BMDs in 32965 subjects from the GEFOS summary results. Combining the evidence from all samples, we identified 2 novel loci for areal BMD: 1q43 (rs1414660, discovery p=1.20×10(-8), FHS p=0.05 for trochanter BMD; rs9287237, discovery p=3.55×10(-7), FHS p=9.20×10(-3) for trochanter BMD, GEFOS p=0.02 for forearm BMD, nearest gene FMN2) and 2q32.2 (rs56346965, discovery p=7.48×10(-7), FHS p=0.10 for inter-trochanter BMD, GEFOS p=0.02 for spine BMD, nearest gene NAB1). The two lead SNPs rs1414660 and rs56346965 are eQTL sites for the genes GREM2 and NAB1 respectively. Functional annotation of GREM2 and NAB1 illustrated their involvement in BMP signaling pathway and in bone development. We also replicated three previously reported loci: 5q14.3 (rs10037512, discovery p=3.09×10(-6), FHS p=8.50×10(-3), GEFOS p=1.23×10(-24) for femoral neck BMD, nearest gene MEF2C), 6q25.1 (rs3020340, discovery p=1.64×10(-6), GEFOS p=1.69×10(-3) for SPN-BMD, nearest gene ESR1) and 7q21.3 (rs13310130, discovery p=8.79×10(-7), GEFOS p=2.61×10(-7) for spine BMD, nearest gene SHFM1). Our findings provide additional insights that further enhance our understanding of bone development, osteoporosis, and fracture pathogenesis.


Asunto(s)
Densidad Ósea/genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 2/genética , Estudio de Asociación del Genoma Completo , Cadera/fisiopatología , Adulto , Femenino , Redes Reguladoras de Genes , Sitios Genéticos , Cadera/patología , Humanos , Masculino , Persona de Mediana Edad , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados
10.
Sci Rep ; 6: 26648, 2016 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-27226242

RESUMEN

Sample storage conditions are important for unbiased analysis of microbial communities in metagenomic studies. Specifically, for infant gut microbiota studies, stool specimens are often exposed to room temperature (RT) conditions prior to analysis. This could lead to variations in structural and quantitative assessment of bacterial communities. To estimate such effects of RT storage, we collected feces from 29 healthy infants (0-3 months) and partitioned each sample into 5 portions to be stored for different lengths of time at RT before freezing at -80 °C. Alpha diversity did not differ between samples with storage time from 0 to 2 hours. The UniFrac distances and microbial composition analysis showed significant differences by testing among individuals, but not by testing between different time points at RT. Changes in the relative abundance of some specific (less common, minor) taxa were still found during storage at room temperature. Our results support previous studies in children and adults, and provided useful information for accurate characterization of infant gut microbiomes. In particular, our study furnished a solid foundation and justification for using fecal samples exposed to RT for less than 2 hours for comparative analyses between various medical conditions.


Asunto(s)
Heces/microbiología , Microbioma Gastrointestinal , Manejo de Especímenes/métodos , Temperatura , Humanos , Lactante , Recién Nacido , Masculino
11.
J Bone Miner Res ; 31(2): 358-68, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26256109

RESUMEN

Protein phosphorylation regulates a wide variety of cellular processes. Thus, we hypothesize that single-nucleotide polymorphisms (SNPs) that may modulate protein phosphorylation could affect osteoporosis risk. Based on a previous conventional genome-wide association (GWA) study, we conducted a three-stage meta-analysis targeting phosphorylation-related SNPs (phosSNPs) for femoral neck (FN)-bone mineral density (BMD), total hip (HIP)-BMD, and lumbar spine (LS)-BMD phenotypes. In stage 1, 9593 phosSNPs were meta-analyzed in 11,140 individuals of various ancestries. Genome-wide significance (GWS) and suggestive significance were defined by α = 5.21 × 10(-6) (0.05/9593) and 1.00 × 10(-4), respectively. In stage 2, nine stage 1-discovered phosSNPs (based on α = 1.00 × 10(-4)) were in silico meta-analyzed in Dutch, Korean, and Australian cohorts. In stage 3, four phosSNPs that replicated in stage 2 (based on α = 5.56 × 10(-3), 0.05/9) were de novo genotyped in two independent cohorts. IDUA rs3755955 and rs6831280, and WNT16 rs2707466 were associated with BMD phenotypes in each respective stage, and in three stages combined, achieving GWS for both FN-BMD (p = 8.36 × 10(-10), p = 5.26 × 10(-10), and p = 3.01 × 10(-10), respectively) and HIP-BMD (p = 3.26 × 10(-6), p = 1.97 × 10(-6), and p = 1.63 × 10(-12), respectively). Although in vitro studies demonstrated no differences in expressions of wild-type and mutant forms of IDUA and WNT16B proteins, in silico analyses predicts that WNT16 rs2707466 directly abolishes a phosphorylation site, which could cause a deleterious effect on WNT16 protein, and that IDUA phosSNPs rs3755955 and rs6831280 could exert indirect effects on nearby phosphorylation sites. Further studies will be required to determine the detailed and specific molecular effects of these BMD-associated non-synonymous variants.


Asunto(s)
Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Proteínas Wnt/genética , Estudios de Cohortes , Femenino , Cuello Femoral/metabolismo , Humanos , Vértebras Lumbares/metabolismo , Masculino , Fosforilación , Proteínas Wnt/metabolismo
12.
Proteomics ; 16(1): 12-28, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26435169

RESUMEN

Menopause is one of the crucial physiological events during the life of a woman. Transition of menopause status is accompanied by increased risks of various health problems such as osteoporosis. Peripheral blood monocytes can differentiate into osteoclasts and produce cytokines important for osteoclast activity. With quantitative proteomics LC-nano-ESI-MS(E) (where MS(E) is elevated-energy MS), we performed protein expression profiling of peripheral blood monocytes in 42 postmenopausal women with discordant bone mineral density (BMD) levels. Traditional comparative analysis showed proteins encoded by four genes (LOC654188, PPIA, TAGLN2, YWHAB) and three genes (LMNB1, ANXA2P2, ANXA2) were significantly down- and upregulated, respectively, in extremely low- versus high-BMD subjects. To study functionally orchestrating groups of detected proteins in the form of networks, we performed weighted gene coexpression network analysis and gene set enrichment analysis. Weighted gene coexpression network analysis showed that the module including the annexin gene family was most significantly correlated with low BMD, and the lipid-binding related GO terms were enriched in this identified module. Gene set enrichment analysis revealed that two significantly enriched gene sets may be involved in postmenopausal BMD variation by regulating pro-inflammatory cytokines activities. To gain more insights into the proteomics data generated, we performed integrative analyses of the datasets available to us at the genome (DNA level), transcriptome (RNA level), and proteome levels jointly.


Asunto(s)
Redes Reguladoras de Genes , Leucocitos Mononucleares/patología , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/patología , Proteínas/genética , Proteómica/métodos , Anciano , Anexinas/genética , Anexinas/metabolismo , Densidad Ósea , Proteína CapZ/genética , Proteína CapZ/metabolismo , Femenino , Humanos , Leucocitos Mononucleares/metabolismo , Persona de Mediana Edad , Osteoporosis Posmenopáusica/metabolismo , Polimorfismo de Nucleótido Simple , Mapas de Interacción de Proteínas , Proteínas/metabolismo , Espectrometría de Masa por Ionización de Electrospray , Transcriptoma , Ubiquitina/genética , Ubiquitina/metabolismo , Población Blanca
13.
Hum Genet ; 135(2): 171-84, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26661625

RESUMEN

Accurately estimating the distribution and heritability of SNP effects across the genome could help explain the mystery of missing heritability. In this study, we propose a novel statistical method for estimating the distribution and heritability of SNP effects from genome-wide association studies (GWASs), and compare its performance to several existing methods using both simulations and real data. Specifically, we study the full range of GWAS summary results and link observed p values and unobserved effect sizes by (non-central) Chi-square distribution. By modeling the observed full set of association signals using a multinomial distribution, we build a likelihood function of SNP effect sizes using parametric and non-parametric maximum likelihood frameworks. Simulation studies show that the proposed method can accurately estimate effect sizes and the number of associated SNPs. As real applications, we analyze publicly available GWAS summary results for height, body mass index (BMI), and bone mineral density (BMD). Our analyses show that there are over 10,000 SNPs that might be associated with height, and the total heritability attributable to these SNPs exceeds 70 %. The heritabilities for BMI and BMD are ~10 and ~15 %, respectively. The results indicate that the proposed method has the potential to improve the accuracy of estimates of heritability and effect size for common SNPs in large-scale GWAS meta-analyses. These improved estimates may contribute to an enhanced understanding of the genetic basis of complex traits.


Asunto(s)
Estudios de Asociación Genética/métodos , Carácter Cuantitativo Heredable , Índice de Masa Corporal , Densidad Ósea , Humanos , Funciones de Verosimilitud , Desequilibrio de Ligamiento , Metaanálisis como Asunto , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple
14.
Biochem J ; 472(3): 309-18, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26438880

RESUMEN

Macrophages within adipose tissue play a key role in mediating inflammatory responses in adipose tissue that are associated with obesity-related metabolic complications. In an effort to identify novel proteins secreted from adipocytes that may negatively regulate macrophage inflammation, we found that peroxiredoxin (PRX)-like 2 activated in M-CSF stimulated monocytes (PAMM), a CXXC-type PRX-like 2 domain-containing redox regulatory protein, is a novel secreted protein with potent anti-inflammatory properties. PAMM is secreted from mature human adipocytes but not preadipocytes. Overexpression of PAMM significantly attenuated lipopolysaccharide (LPS)-induced macrophage inflammation. Incubation of macrophages with adipocyte-conditional medium treated with anti-PAMM antibody significantly enhanced LPS-induced interleukin-12 (IL-12) expression in Raw264.7 cells. In addition, incubation of Raw264.7 cells with purified PAMM protein had a similar anti-inflammatory effect. Moreover, forced expression of PAMM in Raw264.7 cells resulted in decreased LPS-induced ERK1/2, p38 and c-Jun N-terminal kinase (JNK) phosphorylation, suggesting that PAMM exerted the anti-inflammatory function probably by suppressing the mitogen-activated protein kinase (MAPK) signalling pathway. Mutations in the CXXC motif of PAMM that suppressed its anti-redox activity were still able to suppress production of inflammatory cytokines in LPS-stimulated macrophages, suggesting that PAMM's anti-inflammatory properties may be independent of its antioxidant properties. Finally, PAMM was highly expressed in both white (WAT) and brown adipose tissues (BAT) and further increased in obesity status. Our results suggest that adipocyte-derived PAMM may suppress macrophage activation by inhibiting MAPK signalling pathway.


Asunto(s)
Adipocitos/metabolismo , Sistema de Señalización de MAP Quinasas , Activación de Macrófagos , Macrófagos/metabolismo , Peroxirredoxinas/metabolismo , Adipocitos/inmunología , Adipocitos/patología , Secuencias de Aminoácidos , Animales , Células HEK293 , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/inmunología , MAP Quinasa Quinasa 4/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/inmunología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/inmunología , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Mutación , Peroxirredoxinas/genética , Peroxirredoxinas/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Sci Rep ; 5: 13324, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26314804

RESUMEN

Coxsackievirus B3 (CVB3) is a causative agent of viral myocarditis, pancreatitis, and meningitis in humans. Although the susceptibility of CVB3-induced acute pancreatitis is age-dependent, the underlying mechanisms remain unclear. Here we identified the host factor Golgi matrix protein 130 (GM130) as a novel target of CVB3 during CVB3-induced acute pancreatitis. The viral protein VP1 interacted with GM130, disrupted GM130-GRASP65 complexes, and caused GM130 degradation, which may lead to disruption of the Golgi ribbon and development of acute pancreatitis in mice. Interestingly, the expression level of GM130 in mouse pancreas was age-dependent, which was nicely correlated with the age-associated susceptibility of CVB3-induced acute pancreatitis. Furthermore, interference RNA-mediated knockdown of GM130 significantly reduced CVB3 replication in HeLa cells. Taken together, the study identified GM130 as a novel target of CVB3, which may implicate in the pathogenesis of CVB3-induced acute pancreatitis.


Asunto(s)
Autoantígenos/metabolismo , Enterovirus Humano B/fisiología , Infecciones por Enterovirus/metabolismo , Proteínas de la Membrana/metabolismo , Pancreatitis/metabolismo , Pancreatitis/virología , Proteínas Virales/metabolismo , Enfermedad Aguda , Animales , Infecciones por Enterovirus/complicaciones , Infecciones por Enterovirus/patología , Infecciones por Enterovirus/virología , Aparato de Golgi/metabolismo , Proteínas de la Matriz de Golgi , Células HeLa , Humanos , Ratones Endogámicos BALB C , Miocarditis/metabolismo , Miocarditis/patología , Miocarditis/virología , Especificidad de Órganos , Pancreatitis/patología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Replicación Viral
16.
J Clin Endocrinol Metab ; 100(11): E1457-66, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26312577

RESUMEN

OBJECTIVE: Age at menarche (AAM) is determined by the overall duration of endocrine-tissue sex hormone exposure levels. Osteoporosis, the most common metabolic bone disease, is characterized primarily by reduced bone mineral density (BMD) and an increased risk of low trauma fractures. Bone was an endocrine organ regulating the synthesis and secretion of sex steroid hormones. The mutual dependence between bone and gonads underscore the importance of genetic approaches to identify novel pleiotropic genetic factors coregulating BMD and AAM. In this study, we performed a bivariate genome-wide association study (GWAS) to explore novel ethnic common loci and/or genes that may influence both AAM and BMD. METHODS: We analyzed genotyping data available for 826 unrelated Chinese subjects using genome-wide human genotyping arrays. After quality control, a total of 702 413 single-nucleotide polymorphisms (SNPs) were tested for association using a bivariate linear regression model. The interesting SNPs were replicated in three independent cohorts including 1728 unrelated Caucasians, 709 African-Americans, and 408 Hispanic-Americans. RESULTS: We found four SNPs (rs10817638, rs7851259, rs10982287, and rs4979427), located upstream of the ATP6V1G1 gene, were bivariately associated with hip BMD-AAM (P = 4.90 × 10(-7), P = 1.07 × 10(-6), P = 1.28 × 10(-5), and P = 5.42 × 10(-5), respectively). These four SNPs were replicated in African-Americans, with corresponding values of P = 1.95 × 10(-2), P = 3.18 × 10(-2), P = 2.57 × 10(-2), and P = 3.64 × 10(-2), respectively. rs10817638 and rs10982287 were further replicated in Caucasians (P = 1.76 × 10(-2) and P = 9.42 × 10(-3), respectively) and Hispanic-Americans (P = 8.37 × 10(-3) and P = 1.52 × 10(-3), respectively). Meta-analyses yielded stronger association signals for rs10817638 and rs10982287 with combined values of P = 3.02 × 10(-9) and P = 3.49 × 10(-9), respectively. CONCLUSIONS: Our study implicated ATP6V1G1 as a novel pleiotropic gene underlying variation of both BMD and AAM. The findings enhance our knowledge of genetic associations between BMD and AAM and provide a rationale for subsequent functional studies of these implicated genes in the pathophysiology of diseases/traits, such as osteoporosis and AAM.


Asunto(s)
Regiones no Traducidas 5' , Desarrollo del Adolescente , Predisposición Genética a la Enfermedad , Menarquia/genética , Osteoporosis/genética , Polimorfismo de Nucleótido Simple , ATPasas de Translocación de Protón Vacuolares/genética , Adolescente , Adulto , Anciano , Pueblo Asiatico , Densidad Ósea , China , Femenino , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Humanos , Menarquia/metabolismo , Persona de Mediana Edad , Osteoporosis/metabolismo , Osteoporosis Posmenopáusica/genética , Osteoporosis Posmenopáusica/metabolismo , Estados Unidos , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adulto Joven
17.
Hum Mol Genet ; 24(16): 4710-27, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25941324

RESUMEN

MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNA target sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)- and femoral neck (FN)-bone mineral density (BMD). In stage I, 41 102 poly-miRTSs were meta-analyzed in seven cohorts with a genome-wide significance (GWS) α = 0.05/41 102 = 1.22 × 10(-6). By applying α = 5 × 10(-5) (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P = 7.67 × 10(-6) and 1.58 × 10(-5)) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P = 5.08 × 10(-3)) at α = 0.10/11 = 9.09 × 10(-3). PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P = 7.55 × 10(-6)) at α = 0.05/2 = 0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P = 8.87 × 10(-12)). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation.


Asunto(s)
Regiones no Traducidas 3' , Densidad Ósea/genética , Sitios Genéticos , MicroARNs/genética , Polimorfismo Genético , Receptor Tipo 5 de Factor de Crecimiento de Fibroblastos/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino
18.
J Bone Metab ; 21(2): 99-116, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25006567

RESUMEN

In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies.

19.
PLoS One ; 9(5): e96149, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24879436

RESUMEN

Obesity is a major public health problem with a significant genetic component. Multiple DNA polymorphisms/genes have been shown to be strongly associated with obesity, typically in populations of European descent. The aim of this study was to verify the extent to which 6 confirmed obesity genes (FTO, CTNNBL1, ADRB2, LEPR, PPARG and UCP2 genes) could be replicated in 8 different samples (n = 11,161) and to explore whether the same genes contribute to obesity-susceptibility in populations of different ancestries (five Caucasian, one Chinese, one African-American and one Hispanic population). GWAS-based data sets with 1000 G imputed variants were tested for association with obesity phenotypes individually in each population, and subsequently combined in a meta-analysis. Multiple variants at the FTO locus showed significant associations with BMI, fat mass (FM) and percentage of body fat (PBF) in meta-analysis. The strongest association was detected at rs7185735 (P-value = 1.01×10(-7) for BMI, 1.80×10(-6) for FM, and 5.29×10(-4) for PBF). Variants at the CTNNBL1, LEPR and PPARG loci demonstrated nominal association with obesity phenotypes (meta-analysis P-values ranging from 1.15×10(-3) to 4.94×10(-2)). There was no evidence of association with variants at ADRB2 and UCP2 genes. When stratified by sex and ethnicity, FTO variants showed sex-specific and ethnic-specific effects on obesity traits. Thus, it is likely that FTO has an important role in the sex- and ethnic-specific risk of obesity. Our data confirmed the role of FTO, CTNNBL1, LEPR and PPARG in obesity predisposition. These findings enhanced our knowledge of genetic associations between these genes and obesity-related phenotypes, and provided further justification for pursuing functional studies of these genes in the pathophysiology of obesity. Sex and ethnic differences in genetic susceptibility across populations of diverse ancestries may contribute to a more targeted prevention and customized treatment of obesity.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Obesidad/genética , Grupos Raciales/genética , Humanos , Fenotipo , Reproducibilidad de los Resultados
20.
N Engl J Med ; 370(13): 1220-6, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24670168

RESUMEN

The human zona pellucida is composed of four glycoproteins (ZP1, ZP2, ZP3, and ZP4) and has an important role in reproduction. Here we describe a form of infertility with an autosomal recessive mode of inheritance, characterized by abnormal eggs that lack a zona pellucida. We identified a homozygous frameshift mutation in ZP1 in six family members. In vitro studies showed that defective ZP1 proteins and normal ZP3 proteins colocalized throughout the cells and were not expressed at the cell surface, suggesting that the aberrant ZP1 results in the sequestration of ZP3 in the cytoplasm, thereby preventing the formation of the zona pellucida around the oocyte.


Asunto(s)
Proteínas del Huevo/genética , Proteínas del Huevo/metabolismo , Genes Recesivos , Infertilidad Femenina/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Óvulo/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Adulto , China , Análisis Mutacional de ADN , Proteínas del Huevo/química , Femenino , Mutación del Sistema de Lectura , Heterocigoto , Homocigoto , Humanos , Infertilidad Femenina/patología , Glicoproteínas de Membrana/química , Óvulo/patología , Linaje , Receptores de Superficie Celular/química , Glicoproteínas de la Zona Pelúcida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...