Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol Pathol ; 51(4): 205-215, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37578155

RESUMEN

The evaluation of changes in the immune system serves to determine the efficacy and potential immunotoxicologic effects of new products under development. Toxicologic pathologists play critical roles in identifying immune system changes that drive the immunosafety determination. Standard pathology evaluations of therapies and chemicals remain similar; however, biopharmaceutical therapies have moved from simply affecting the immune system to being specifically developed to modify the immune system, which can impact interpretation. Recent explosive growth in immunomodulatory therapies presents a challenge to the toxicologic pathologist, toxicologist, and regulatory reviewer in terms of evaluating the clinical relevance and potential adversity of immune system changes. Beyond the recognition of such changes, there is an increasing expectation to evaluate, describe, and interpret how therapies affect complex immune system pathways for both immunomodulatory therapies and non-immunomodulatory drugs with off-target immunotoxic effects. In this opinion piece, considerations regarding immune system evaluation, the current landscape of immunomodulatory therapies, a brief description of immunotoxicologic (and immunopathologic) endpoints, the importance of integrating such immunosafety data, and relevance to adversity determination are discussed. Importantly, we describe how the current paradigm of determining adversity for immune system changes may be challenging or insufficient and propose a harmonized and flexible approach for assessing adversity.

2.
J Immunol ; 207(5): 1322-1332, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34341171

RESUMEN

MicroRNA-21 (miR-21) inhibits IL-12 expression and impairs the Th1 response necessary for control of Leishmania infection. Recent studies have shown that Leishmania infection induces miR-21 expression in dendritic cells and macrophages, and inhibition of miR-21 restores IL-12 expression. Because miR-21 is known to be expressed due to inflammatory stimuli in a wide range of hematopoietic cells, we investigated the role of miR-21 in regulating immune responses during visceral leishmaniasis (VL) caused by Leishmania donovani infection. We found that miR-21 expression was significantly elevated in dendritic cells, macrophages, inflammatory monocytes, polymorphonuclear neutrophils, and in the spleen and liver tissues after L. donovani infection, concomitant with an increased expression of disease exacerbating IL-6 and STAT3. Bone marrow dendritic cells from miR-21 knockout (miR-21KO) mice showed increased IL-12 production and decreased production of IL-10. On L. donovani infection, miR-21KO mice exhibited significantly greater numbers of IFN-γ- and TNF-α-producing CD4+ and CD8+ T cells in their organs that was associated with increased production of Th1-associated IFN-γ, TNF-α, and NO from the splenocytes. Finally, miR-21KO mice displayed significantly more developing and mature hepatic granulomas leading to reduction in organ parasitic loads compared with wild type counterparts. Similar results were noted in L. donovani-infected wild type mice after transient miR-21 depletion. These observations indicate that miR-21 plays a critical role in pathogenesis of VL by suppressing IL-12- and Th1-associated IFN-γ and also inducing disease-promoting induction of the IL-6 and STAT-3 signaling pathway. miR-21 could therefore be used as a potential target for developing host-directed treatment for VL.


Asunto(s)
Células Dendríticas/inmunología , Leishmania donovani/fisiología , Leishmaniasis Visceral/inmunología , MicroARNs/genética , Monocitos/inmunología , Neutrófilos/inmunología , Células TH1/inmunología , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Resistencia a la Enfermedad , Inmunidad Celular , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT3/metabolismo , Regulación hacia Arriba
3.
Am J Pathol ; 191(2): 335-352, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33181139

RESUMEN

Human T-lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia, a disease commonly associated with hypercalcemia and osteolysis. There is no effective treatment for HTLV-1, and the osteolytic mechanisms are not fully understood. Mice expressing the HTLV-1 oncogene Tax, driven by the human granzyme B promoter (Tax+), develop osteolytic tumors. To investigate the progression of the bone-invasive malignancies, wild-type, Tax+, and Tax+/interferon-γ-/- mice were assessed using necropsy, histologic examination, IHC analysis, flow cytometry, and advanced imaging. Tax+ and Tax+/interferon-γ-/- malignancies of the ear, tail, and foot comprised poorly differentiated, round to spindle-shaped cells with prominent neutrophilic infiltrates. Tail tumors originated from muscle, nerve, and/or tendon sheaths, with frequent invasion into adjacent bone. F4/80+ and anti-mouse CD11b (Mac-1)+ histiocytic cells predominated within the tumors. Three Tax+/interferon-γ-/- cell lines were generated for in vivo allografts, in vitro gene expression and bone resorption assays. Two cell lines were of monocyte/macrophage origin, and tumors formed in vivo in all three. Differences in Pthrp, Il6, Il1a, Il1b, and Csf3 expression in vitro were correlated with differences in in vivo plasma calcium levels, tumor growth, metastasis, and neutrophilic inflammation. Tax+ mouse tumors were classified as bone-invasive histiocytic sarcomas. The cell lines are ideal for further examination of the role of HTLV-1 Tax in osteolytic tumor formation and the development of hypercalcemia and tumor-associated inflammation.


Asunto(s)
Línea Celular Tumoral , Modelos Animales de Enfermedad , Genes pX , Infecciones por HTLV-I/complicaciones , Sarcoma Histiocítico , Animales , Carcinogénesis/genética , Sarcoma Histiocítico/patología , Sarcoma Histiocítico/virología , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oncogenes , Osteólisis/patología , Osteólisis/virología
4.
Infect Immun ; 87(8)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31182615

RESUMEN

CD4+ T helper 1 (Th1) cells producing interferon gamma (IFN-γ) are critical for the resolution of visceral leishmaniasis (VL). MicroRNA 155 (miR155) promotes CD4+ Th1 responses and IFN-γ production by targeting suppressor of cytokine signaling-1 (SOCS1) and Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP-1) and therefore could play a role in the resolution of VL. To determine the role of miR155 in VL, we monitored the course of Leishmania donovani infection in miR155 knockout (miR155KO) and wild-type (WT) C57BL/6 mice. miR155KO mice displayed significantly higher liver and spleen parasite loads than WT controls and showed impaired hepatic granuloma formation. However, parasite growth eventually declined in miR155KO mice, suggesting the induction of a compensatory miR155-independent antileishmanial pathway. Leishmania antigen-stimulated splenocytes from miR155KO mice produced significantly lower levels of Th1-associated IFN-γ than controls. Interestingly, at later time points, levels of Th2-associated interleukin-4 (IL-4) and IL-10 were also lower in miR155KO splenocyte supernatants than in WT mice. On the other hand, miR155KO mice displayed significantly higher levels of IFN-γ, iNOS, and TNF-α gene transcripts in their livers than WT mice, indicating that distinct organ-specific antiparasitic mechanisms were involved in control of L. donovani infection in miR155KO mice. Throughout the course of infection, organs of miR155KO mice showed significantly more PDL1-expressing Ly6Chi inflammatory monocytes than WT mice. Conversely, blockade of Ly6Chi inflammatory monocyte recruitment in miR155KO mice significantly reduced parasitic loads, indicating that these cells contributed to disease susceptibility. In conclusion, we found that miR155 contributes to the control of L. donovani but is not essential for infection resolution.


Asunto(s)
Leishmania donovani , Leishmaniasis Visceral/inmunología , MicroARNs/fisiología , Animales , Granuloma/etiología , Interferón gamma/fisiología , Ratones , Ratones Endogámicos C57BL , Monocitos/fisiología , Linfocitos T/inmunología , Factor de Necrosis Tumoral alfa/fisiología
5.
J Infect Dis ; 219(4): 599-608, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30239895

RESUMEN

Background: New drugs are needed for leishmaniasis because current treatments such as pentavalent antimonials are toxic and require prolonged administration, leading to poor patient compliance. Ibrutinib is an anticancer drug known to modulate T-helper type 1 (Th1)/Th2 responses and has the potential to regulate immunity against infectious disease. Methods: In this study, we evaluated the efficacy of oral ibrutinib as a host-targeted treatment for visceral leishmaniasis (VL) caused by Leishmania donovani using an experimental mouse model. Results: We found that oral ibrutinib was significantly more effective than the pentavalent antimonial sodium stibogluconate (70 mg/kg) for the treatment of VL caused by L. donovani. Ibrutinib treatment increased the number of interleukin 4- and interferon γ-producing natural killer T cells in the liver and spleen and enhanced granuloma formation in the liver. Further, ibrutinib treatment reduced the influx of Ly6Chi inflammatory monocytes, which mediate susceptibility to L. donovani. Finally, ibrutinib treatment was associated with the increased production of the cytokines interferon γ, tumor necrosis factor α, interleukin 4, and interleukin 13 in the liver and spleen, which are associated with protection against L. donovani. Conclusions: Our findings show that oral ibrutinib is highly effective for the treatment of VL caused by L. donovani and mediates its antileishmanial activity by promoting host immunity. Therefore, ibrutinib could be a novel host-targeted drug for the treatment of VL.


Asunto(s)
Factores Inmunológicos/administración & dosificación , Leishmania donovani/crecimiento & desarrollo , Leishmaniasis Visceral/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Adenina/análogos & derivados , Administración Oral , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunidad Celular , Ratones , Ratones Endogámicos BALB C , Piperidinas , Resultado del Tratamiento
6.
Front Immunol ; 9: 1593, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30042766

RESUMEN

Macrophages and their monocyte precursors mediate innate immune responses and can promote a spectrum of phenotypes from pro-inflammatory to pro-resolving. Currently, there are few markers that allow for robust dissection of macrophage phenotype. We recently identified CD38 as a marker of inflammatory macrophages in murine in vitro and in vivo models. However, it is unknown whether CD38 plays a similar marker and/or functional role in human macrophages and inflammatory diseases. Here, we establish that CD38 transcript and protein are robustly induced in human macrophages exposed to LPS (±IFN-γ) inflammatory stimuli, but not with the alternative stimulus, IL-4. Pharmacologic and/or genetic CD38 loss-of-function significantly reduced the secretion of inflammatory cytokines IL-6 and IL-12p40 and glycolytic activity in human primary macrophages. Finally, monocyte analyses in systemic lupus erythematosus patients revealed that, while all monocytes express CD38, high CD38 expression in the non-classical monocyte subpopulation is associated with disease. These data are consistent with an inflammatory marker role for CD38 in human macrophages and monocytes.

8.
Sci Rep ; 7(1): 15424, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-29133913

RESUMEN

Myeloid derived suppressor cells (MDSC) produce nitric oxide (NO) and inhibit dendritic cell (DC) immune responses in cancer. DCs present cancer cell antigens to CD4+ T cells through Jak-STAT signal transduction. In this study, NO donors (SNAP and DETA-NONOate) inhibited DC antigen presentation. As expected, MDSC isolated from peripheral blood mononuclear cells (PBMC) from cancer patients produced high NO levels. We hypothesized that NO producing MDSC in tumor-bearing hosts would inhibit DC antigen presentation. Antigen presentation from DCs to CD4+ T cells (T cell receptor transgenic OT-II) was measured via a [3H]-thymidine incorporation proliferation assay. MDSC from melanoma tumor models decreased the levels of proliferation more than pancreatic cancer derived MDSC. T cell proliferation was restored when MDSC were treated with inhibitors of inducible nitric oxide synthase (L-NAME and NCX-4016). A NO donor inhibited OT II T cell receptor recognition of OT II specific tetramers, thus serving as a direct measure of NO inhibition of antigen presentation. Our group has previously demonstrated that STAT1 nitration also mediates MDSC inhibitory effects on immune cells. Therefore, a novel liquid chromatography-tandem mass spectrometry assay demonstrated that nitration of the STAT1-Tyr701 occurs in PBMC derived from both pancreatic cancer and melanoma patients.


Asunto(s)
Melanoma Experimental/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Óxido Nítrico/metabolismo , Neoplasias Pancreáticas/inmunología , Factor de Transcripción STAT1/metabolismo , Animales , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Humanos , Melanoma Experimental/patología , Ratones , Ratones Transgénicos , Células Supresoras de Origen Mieloide/inmunología , Óxido Nítrico/inmunología , Donantes de Óxido Nítrico/metabolismo , Neoplasias Pancreáticas/sangre , Factor de Transcripción STAT1/análisis , Espectrometría de Masas en Tándem
9.
Cell Transplant ; 26(1): 11-21, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27393133

RESUMEN

Bilirubin has been recognized as a powerful cytoprotectant when used at physiologic doses and was recently shown to have immunomodulatory effects in islet allograft transplantation, conveying donor-specific tolerance in a murine model. We hypothesized that bilirubin, an antioxidant, acts to suppress the innate immune response to islet allografts through two mechanisms: 1) by suppressing graft release of damage-associated molecular patterns (DAMPs) and inflammatory cytokines, and 2) by producing a tolerogenic phenotype in antigen-presenting cells. Bilirubin was administered intraperitoneally before pancreatic procurement or was added to culture media after islet isolation in AJ mice. Islets were exposed to transplant-associated nutrient deprivation and hypoxia. Bilirubin significantly decreased islet cell death after isolation and hypoxic stress. Bilirubin supplementation of islet media also decreased the release of DAMPs (HMGB1), inflammatory cytokines (IL-1ß and IL-6), and chemokines (MCP-1). Cytoprotection was mediated by the antioxidant effects of bilirubin. Treatment of macrophages with bilirubin induced a regulatory phenotype, with increased expression of PD-L1. Coculture of these macrophages with splenocytes led to expansion of Foxp3+ Tregs. In conclusion, exogenous bilirubin supplementation showed cytoprotective and antioxidant effects in a relevant model of islet isolation and hypoxic stress. Suppression of DAMP release, alterations in cytokine profiles, and tolerogenic effects on macrophages suggest that the use of this natural antioxidant may provide a method of preconditioning to improve outcomes after allograft transplantation.


Asunto(s)
Bilirrubina/uso terapéutico , Tolerancia Inmunológica/efectos de los fármacos , Trasplante de Islotes Pancreáticos/inmunología , Trasplante de Islotes Pancreáticos/métodos , Animales , Supervivencia Celular/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Proteína HMGB1/metabolismo , Tolerancia Inmunológica/inmunología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/inmunología , Inmunoensayo , Ratones
10.
Cell Immunol ; 309: 61-68, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27614845

RESUMEN

The outcome of visceral leishmaniasis, caused by parasite Leishmania donovani, depends on the recruitment of leishmanicidal Th1 cells. Chemokine receptor CXCR3, preferentially expressed by Th1 cells, is critical for migration of these T cells during infection. During chronic VL, there is a decrease in the presence of CXCR3-expressing CD4+ T cells in the spleen, which is associated with high parasitic burden in this organ. We therefore examined whether T cell-specific expression of CXCR3 in mice (CXCR3Tg) would promote resistance to VL. L. donovani infected CXCR3Tg mice showed increased accumulation of T cells in the spleens compared to WT littermates (CXCR3+/+). However, CXCR3+ T cells from CXCR3Tg mice showed low CD69 expression and these mice developed fewer granulomas. Additionally, both groups of mice showed similar cytokine profiles and parasitic burdens during the course of infection. In summary, although T cell-specific expression of CXCR3 promoted the accumulation of CXCR3-expressing T cells during L. donovani infection, this did not enhance resistance to VL.


Asunto(s)
Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Hígado/fisiología , Receptores CXCR3/metabolismo , Bazo/fisiología , Células TH1/inmunología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Movimiento Celular/genética , Células Cultivadas , Lectinas Tipo C/metabolismo , Hígado/parasitología , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Especificidad de Órganos , Receptores CXCR3/genética , Bazo/parasitología , Células TH1/parasitología , Balance Th1 - Th2 , Transgenes/genética
11.
Am J Vet Res ; 77(6): 604-12, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27227498

RESUMEN

OBJECTIVE To evaluate the effects of damage-associated molecular patterns (DAMPs) derived from disrupted mitochondria on canine splenocytes and other immune cells. SAMPLES Liver, spleen, and bone marrow samples obtained from 8 cadavers of healthy research Beagles that had been euthanized for other purposes. PROCEDURES Mitochondria were obtained from canine hepatocytes, and mitochondrial DAMPs (containing approx 75% mitochondrial proteins) were prepared. Mitochondrial DAMPs and the nuclear cytokine high-mobility group box protein 1 were applied to splenocytes, bone marrow-differentiated dendritic cells, and a canine myelomonocytic cell (DH82) line for 6 or 24 hours. Cell culture supernatants from splenocytes, dendritic cells, and DH82 cells were assayed for tumor necrosis factor α with an ELISA. Expression of tumor necrosis factor α mRNA in splenocytes was evaluated with a quantitative real-time PCR assay. RESULTS In all cell populations evaluated, production of tumor necrosis factor α was consistently increased by mitochondrial DAMPs at 6 hours (as measured by an ELISA). In contrast, high-mobility group box protein 1 did not have any independent proinflammatory effects in this experimental system. CONCLUSIONS AND CLINICAL RELEVANCE The study revealed an in vitro inflammatory effect of mitochondrial DAMPs (containing approx 75% mitochondrial proteins) in canine cells and validated the use of an in vitro splenocyte model to assess DAMP-induced inflammation in dogs. This experimental system may aid in understanding the contribution of DAMPs to sepsis and the systemic inflammatory response syndrome in humans. Further studies in dogs are needed to validate the biological importance of these findings and to evaluate the in vivo role of mitochondrial DAMPs in triggering and perpetuating systemic inflammatory states.


Asunto(s)
Perros , Mitocondrias/metabolismo , Bazo/citología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Cadáver , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamación/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Factor de Necrosis Tumoral alfa/genética
12.
J Immunotoxicol ; 13(5): 652-65, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27075513

RESUMEN

The potential to engineer extracellular vesicles (EV) that target specific cells and deliver a therapeutic payload has propelled a growing interest in their development as promising therapeutics. These EV are often produced from cultured cells. Very little is known about the interaction of cell culture-derived EV with cells of the immune system and their potential immunomodulatory effects. The present study evaluated potential immunotoxic effects of HEK293T-derived EV on the human monocytic cell lines THP-1 and U937. Incubation of cells with different doses of EV for 16-24 h was followed by assessment of cytotoxicity and cell function by flow cytometry. Changes in cell functionality were evaluated by the capacity of cells to phagocytize fluorescent microspheres. In addition, the internalization of labeled EV in THP-1 and U937 cells was evaluated. Exposure to EV did not affect the viability of THP-1 or U937 cells. Although lower doses of the EV increased phagocytic capacity in both cell lines, phagocytic efficiency of individual cells was not affected by EV exposure at any of the doses evaluated. This study also demonstrated that THP-1 and U937 monocytic cells are highly permissive to EV entry in a dose-response manner. These results suggest that, although HEK293T-derived EV are efficiently internalized by human monocytic cells, they do not exert a cytotoxic effect or alter phagocytic efficiency on the cell lines evaluated.


Asunto(s)
Muerte Celular , Vesículas Extracelulares/inmunología , Monocitos/inmunología , Técnicas de Cultivo de Célula , Supervivencia Celular , Sistemas de Liberación de Medicamentos/métodos , Células HEK293 , Humanos , Fagocitosis , Células U937
13.
PLoS One ; 10(7): e0132921, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26218271

RESUMEN

OBJECTIVE: Immune suppression during critical illness predisposes to serious infections. We sought to determine the mechanisms regulating tolerance and cross-tolerance to common pro-inflammatory danger signals in a model that recapitulates the intact in vivo immune response. MATERIALS AND METHODS: Flt3-expanded splenocytes obtained from wild-type or matching IRAK-M knockout (IRAK-M-/-), C57BL/6, male mice (8-10 weeks old) were treated repeatedly or alternately with either LPS or CpGA DNA, agonists of Toll-like receptor (TLR)-4 and -9, respectively, over successive 24-hour periods. Supernatants were collected following each 24-hour period with cytokine release (ELISA) and splenocyte IRAK-M expression (Western blot) determined. Tolerance and cross-tolerance were assessed in the absence or presence of programmed death receptor (PD)-1 blocking antibody or IL-7 pre-treatment. MAIN RESULTS: Splenocytes notably exhibited both tolerance and cross-tolerance to subsequent treatments with either LPS or CpGA DNA. The character of tolerance and cross-tolerance in this model was distinct following initial LPS or CpGA treatment in that TNFα and IFNγ release (not IL-10) were suppressed following LPS; whereas, initial CpGA treatment suppressed TNFα, IFNγ and IL-10 release in response to subsequent stimulation (LPS or CpGA). Tolerance and cross-tolerance were unrelated to IL-10 release or PD-1 but were attenuated in IRAK-M-/- splenocytes. IL-7 significantly suppressed IRAK-M expression and restored TNFα and IFNγ production without influencing IL-10 release. CONCLUSIONS: In summary, acute immune tolerance and cross-tolerance in response to LPS or CpGA were distinct in that LPS selectively suppressed pro-inflammatory cytokine responses; whereas, CpGA suppressed both pro- and anti-inflammatory responses. The induction of tolerance and cross-tolerance in response to common danger signals was mechanistically unrelated to IL-10 or PD-1 but was directly influenced by IRAK-M expression. IL-7 reduced IRAK-M expression and attenuated immune tolerance induced by either LPS or CpGA, and thus may be useful for reversal of immune tolerance in the setting of critical illness.


Asunto(s)
Tolerancia Inmunológica , Quinasas Asociadas a Receptores de Interleucina-1/inmunología , Interleucina-7/inmunología , Bazo/inmunología , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 9/inmunología , Animales , Interferón gamma/genética , Interferón gamma/inmunología , Quinasas Asociadas a Receptores de Interleucina-1/genética , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-7/genética , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Noqueados , Oligodesoxirribonucleótidos/farmacología , Bazo/citología , Receptor Toll-Like 4/genética , Receptor Toll-Like 9/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
15.
BMC Immunol ; 15: 8, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24548459

RESUMEN

BACKGROUND: Myeloid cells (MC) have potent immunoregulatory abilities that can be therapeutically useful to treat inflammatory disease. However, the factors which promote regulatory myeloid cell differentiation remain poorly understood. We have previously shown that estriol (E3) induces mature regulatory dendritic cells in vivo. To determine whether additional steroid hormones could induce mature regulatory myeloid cells, we investigated the effects of retinoic acid (RA) on MCs. Retinoic acid is a steroid hormone important in regulating mucosal immunity in the gut and promoting myeloid differentiation. We hypothesized that the presence of RA during differentiation would promote the formation of mature regulatory myeloid cells (MCregs). METHODS: To determine RA's ability to induce regulatory myeloid cells, we differentiated bone marrow progenitor cells with granulocytic-macrophage colony-stimulating factor (GM-CSF) under the influence of RA. We found that day 7 MCs differentiated in the presence of RA had an increase in the percent positive and relative expression levels of both maturation (CD80, CD86, and MHCII) and inhibitory (PD-L1 and PD-L2) markers compared to control cells. Functionally, these day 7 RA MCs expressed increased intracellular IL-10, induced regulatory T cells in vitro compared to controls and suppressed the proliferation of responder immune cells even after inflammatory challenge with LPS. CONCLUSION: RA induced mature regulatory myeloid cells that were suppressive and had a CD11b+ CD11c-Ly6C low/intermediate monocyte phenotype. Surprisingly, RA CD11c+ dendritic cells were not suppressive and could contribute to enhanced proliferation. These results suggest that continuous RA has unique effects on different myeloid populations during monopoeisis and dendropoiesis and promotes a population of regulatory monocytes.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Monocitos/citología , Monocitos/efectos de los fármacos , Tretinoina/farmacología , Animales , Antígenos Ly/metabolismo , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Antígeno CD11b/metabolismo , Antígeno CD11c/metabolismo , Diferenciación Celular/inmunología , Línea Celular , Células Dendríticas/inmunología , Inmunofenotipificación , Ratones , Ratones Transgénicos , Monocitos/inmunología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Fenotipo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
16.
Mol Pharm ; 11(3): 828-35, 2014 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-24433027

RESUMEN

Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system that can cause loss of motor function and is thought to result, in part, from chronic inflammation due to an antigen-specific T cell immune response. Current treatments suppress the immune system without antigen specificity, increasing the risks of cancer, chronic infection, and other long-term side effects. In this study, we show treatment of experimental autoimmune encephalomyelitis (EAE), a model of MS, by coencapsulating the immunodominant peptide of myelin oligodendrocyte glycoprotein (MOG) with dexamethasone (DXM) into acetalated dextran (Ac-DEX) microparticles (DXM/MOG/MPs) and administering the microparticles subcutaneously. The clinical score of the mice was reduced from 3.4 to 1.6 after 3 injections 3 days apart with the coencapsulated microparticulate formulation (MOG 17.6 µg and DXM 8 µg). This change in clinical score was significantly greater than observed with phosphate-buffered saline (PBS), empty MPs, free DXM and MOG, DXM/MPs, and MOG/MPs. Additionally, treatment with DXM/MOG/MPs significantly inhibited disease-associated cytokine (e.g., IL-17, GM-CSF) expression in splenocytes isolated in treated mice. Here we show a promising approach for the therapeutic treatment of MS using a polymer-based microparticle delivery platform.


Asunto(s)
Dexametasona/administración & dosificación , Dextranos/química , Sistemas de Liberación de Medicamentos , Encefalomielitis Autoinmune Experimental/terapia , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/administración & dosificación , Polímeros/química , Animales , Proliferación Celular/efectos de los fármacos , Terapia Combinada , Citocinas/metabolismo , Dexametasona/farmacocinética , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Glicoproteína Mielina-Oligodendrócito/metabolismo , Óxido Nítrico/metabolismo , Fragmentos de Péptidos/inmunología , Distribución Tisular
17.
J Antimicrob Chemother ; 69(1): 168-75, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23956375

RESUMEN

OBJECTIVES: The imidazoquinoline family of drugs are Toll-like receptor 7/8 agonists that have previously been used in the treatment of cutaneous leishmaniasis. Because of the hydrophobic nature of imidazoquinolines, they are traditionally not administered systemically for the treatment of visceral leishmaniasis. We formulated liposomal resiquimod, an imidazoquinoline, for the systemic treatment of visceral leishmaniasis. METHODS: By using lipid film hydration with extrusion, we encapsulated resiquimod in liposomes. These liposomes were then injected intravenously to treat BALB/c mice infected with Leishmania donovani. RESULTS: Treatment with liposomal resiquimod significantly decreased the parasite load in the liver, spleen and bone marrow. In addition, resiquimod treatment increased interferon-γ and interleukin-10 production in an antigen recall assay. Resiquimod was shown to be non-toxic in histology and in vitro culture experiments. CONCLUSIONS: FDA-approved resiquimod, in a liposomal formulation, displays promising results in treating visceral leishmaniasis.


Asunto(s)
Antiprotozoarios/administración & dosificación , Imidazoles/administración & dosificación , Leishmania donovani/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Liposomas/administración & dosificación , Administración Intravenosa , Animales , Médula Ósea/parasitología , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Leishmania donovani/aislamiento & purificación , Leishmaniasis Visceral/parasitología , Leucocitos Mononucleares/inmunología , Hígado/parasitología , Ratones , Ratones Endogámicos BALB C , Carga de Parásitos , Bazo/parasitología , Resultado del Tratamiento
18.
Eur J Immunol ; 44(2): 450-9, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24242758

RESUMEN

We and others have previously shown that IL-12 is indispensable for immunity and is required for the optimal antiparasitic activity of antimonials in experimental visceral leishmaniasis caused by Leishmania donovani. Here we investigated the role of STAT4 in immunity against L. donovani using STAT4 knockout mice and also determined the effect of STAT4 deficiency in response to antimonial therapy. Upon infection with L. donovani, stat4⁻/⁻ BALB/c and C57BL/6 mice showed enhanced susceptibility to Leishmania during late time points of infection which was associated with a marked reduction in Th1 responses and hepatic immunopathology. Interestingly, these defects in Th1 responses in stat4⁻/⁻ did not impair the antimonial chemotherapy as both stat4⁻/⁻ and WT mice showed comparable levels of parasite clearance from the liver and spleen. These findings highlight the role of STAT4 in immunity to L. donovani infection and also provide evidence that STAT4 is dispensable for antimonial-based chemotherapy.


Asunto(s)
Leishmania donovani/inmunología , Leishmaniasis Visceral/inmunología , Factor de Transcripción STAT4/genética , Factor de Transcripción STAT4/inmunología , Animales , Interleucina-10/inmunología , Interleucina-4/inmunología , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/parasitología , Hígado/inmunología , Hígado/parasitología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Factor de Transcripción STAT4/deficiencia , Bazo/inmunología , Bazo/parasitología , Células TH1/inmunología
19.
PLoS One ; 8(8): e72354, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951313

RESUMEN

OBJECTIVE: Mitochondrial transcription factor A (TFAM) is normally bound to and remains associated with mitochondrial DNA (mtDNA) when released from damaged cells. We hypothesized that TFAM, bound to mtDNA (or equivalent CpG-enriched DNA), amplifies TNFα release from TLR9-expressing plasmacytoid dendritic cells (pDCs) by engaging RAGE. MATERIALS AND METHODS: Murine Flt3 ligand-expanded splenocytes obtained from C57BL/6 mice were treated with recombinant human TFAM, alone or in combination with CpG-enriched DNA with subsequent TNFα release measured by ELISA. The role of RAGE was determined by pre-treatment with soluble RAGE or heparin or by employing matching RAGE (-/-) splenocytes. TLR9 signaling was evaluated using a specific TLR9-blocking oligonucleotide and by inhibiting endosomal processing, PI3K and NF-κB. Additional studies examined whether heparin sulfate moieties or endothelin converting enzyme-1 (ECE-1)-dependent recycling of endosomal receptors were required for TFAM and CpG DNA recognition. MAIN RESULTS: TFAM augmented splenocyte TNFα release in response to CpGA DNA, which was strongly dependent upon pDCs and regulated by RAGE and TLR9 receptors. Putative TLR9 signaling pathways, including endosomal acidification and signaling through PI3K and NF-κB, were essential for splenocyte TNFα release in response to TFAM+CpGA DNA. Interestingly, TNFα release depended upon endothelin converting enzyme (ECE)-1, which cleaves and presumably activates TLR9 within endosomes. Recognition of the TFAM-CpGA DNA complex was dependent upon heparin sulfate moieties, and recombinant TFAM Box 1 and Box 2 proteins were equivalent in terms of augmenting TNFα release. CONCLUSIONS: TFAM promoted TNFα release in a splenocyte culture model representing complex cell-cell interactions in vivo with pDCs playing a critical role. To our knowledge, this study is the first to incriminate ECE-1-dependent endosomal cleavage of TLR9 as a critical step in the signaling pathway leading to TNFα release. These findings, and others reported herein, significantly advance our understanding of sterile immune responses triggered by mitochondrial danger signals.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Células Dendríticas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Receptor Toll-Like 9/metabolismo , Factores de Transcripción/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Línea Celular , Islas de CpG , ADN Mitocondrial/inmunología , ADN Mitocondrial/metabolismo , Células Dendríticas/inmunología , Proteína HMGB1/metabolismo , Proteína HMGB2/metabolismo , Humanos , Masculino , Ratones , Modelos Biológicos , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Transducción de Señal , Bazo/citología , Bazo/metabolismo
20.
Breast Cancer Res Treat ; 140(1): 13-21, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23828498

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a population of immature myeloid cells defined by their suppressive actions on immune cells such as T cells, dendritic cells, and natural killer cells. MDSCs typically are positive for the markers CD33 and CD11b but express low levels of HLADR in humans. In mice, MDSCs are typically positive for both CD11b and Gr1. These cells exert their suppressive activity on the immune system via the production of reactive oxygen species, arginase, and cytokines. These factors subsequently inhibit the activity of multiple protein targets such as the T cell receptor, STAT1, and indoleamine-pyrrole 2,3-dioxygenase. The numbers of MDSCs tend to increase with cancer burden while inhibiting MDSCs improves disease outcome in murine models. MDSCs also inhibit immune cancer therapeutics. In light of the poor prognosis of metastatic breast cancer in women and the correlation of increasing levels of MDSCs with increasing disease burden, the purposes of this review are to (1) discuss why MDSCs may be important in breast cancer, (2) describe model systems used to study MDSCs in vitro and in vivo, (3) discuss mechanisms involved in MDSC induction/function in breast cancer, and (4) present pre-clinical and clinical studies that explore modulation of the MDSC-immune system interaction in breast cancer. MDSCs inhibit the host immune response in breast cancer patients and diminishing MDSC actions may improve therapeutic outcomes.


Asunto(s)
Neoplasias de la Mama/patología , Células Mieloides/inmunología , Células Mieloides/patología , Animales , Células de la Médula Ósea/citología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/psicología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Genes Supresores de Tumor , Humanos , Inmunoterapia/métodos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Transgénicos , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , Viroterapia Oncolítica/métodos , Valor Predictivo de las Pruebas , Especies Reactivas de Oxígeno/metabolismo , Estrés Psicológico , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...