Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(6): 3031-3049, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38281187

RESUMEN

Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span. Investigation of the molecular mechanisms involved shows that H2A.Z is required to initiate DNA double strand break repair by recruiting Ku80 at DNA lesions. This is achieved via specific interactions of Ku80 vWA domain with H2A.Z. Taken as a whole, our data reveal that H2A.Z containing nucleosomes act as a molecular platform to bring together the proteins required to initiate and process DNA double strand break repair.


Asunto(s)
Envejecimiento Prematuro , Histonas , Fibras Musculares Esqueléticas , Animales , Ratones , Envejecimiento Prematuro/genética , ADN , Roturas del ADN de Doble Cadena , Histonas/genética , Histonas/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Nucleosomas
2.
J Exp Clin Cancer Res ; 42(1): 301, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37957685

RESUMEN

BACKGROUND: Inherited defects in the base-excision repair gene MBD4 predispose individuals to adenomatous polyposis and colorectal cancer, which is characterized by an accumulation of C > T transitions resulting from spontaneous deamination of 5'-methylcytosine. METHODS: Here, we have investigated the potential role of MBD4 in regulating DNA methylation levels using genome-wide transcriptome and methylome analyses. Additionally, we have elucidated its function through a series of in vitro experiments. RESULTS: Here we show that the protein MBD4 is required for DNA methylation maintenance and G/T mismatch repair. Transcriptome and methylome analyses reveal a genome-wide hypomethylation of promoters, gene bodies and repetitive elements in the absence of MBD4 in vivo. Methylation mark loss is accompanied by a broad transcriptional derepression phenotype affecting promoters and retroelements with low methylated CpG density. MBD4 in vivo forms a complex with the mismatch repair proteins (MMR), which exhibits high bi-functional glycosylase/AP-lyase endonuclease specific activity towards methylated DNA substrates containing a G/T mismatch. Experiments using recombinant proteins reveal that the association of MBD4 with the MMR protein MLH1 is required for this activity. CONCLUSIONS: Our data identify MBD4 as an enzyme specifically designed to repair deaminated 5-methylcytosines and underscores its critical role in safeguarding against methylation damage. Furthermore, it illustrates how MBD4 functions in normal and pathological conditions.


Asunto(s)
Reparación del ADN , Retroelementos , Humanos , Reparación de la Incompatibilidad de ADN , Proteínas Recombinantes/genética , Metilación de ADN , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo
3.
Trends Biochem Sci ; 48(10): 849-859, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37596196

RESUMEN

CENP-A is an essential histone variant that replaces the canonical H3 at the centromeres and marks these regions epigenetically. The CENP-A nucleosome is the specific building block of centromeric chromatin, and it is recognized by CENP-C and CENP-N, two components of the constitutive centromere-associated network (CCAN), the first protein layer of the kinetochore. Recent proposals of the yeast and human (h)CCAN structures position the assembly on exposed DNA, suggesting an elusive spatiotemporal recognition. We summarize the data on the structural organization of the CENP-A nucleosome and the binding of CENP-C and CENP-N. The latter posits an apparent contradiction in engaging the CENP-A nucleosome versus the CCAN. We propose a reconciliatory model for the assembly of CCAN on centromeric chromatin.


Asunto(s)
Cinetocoros , Nucleosomas , Humanos , Proteína A Centromérica , Cromatina , Saccharomyces cerevisiae
4.
Nucleic Acids Res ; 50(13): 7350-7366, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35766398

RESUMEN

The histone variant H3.3 is encoded by two distinct genes, H3f3a and H3f3b, exhibiting identical amino-acid sequence. H3.3 is required for spermatogenesis, but the molecular mechanism of its spermatogenic function remains obscure. Here, we have studied the role of each one of H3.3A and H3.3B proteins in spermatogenesis. We have generated transgenic conditional knock-out/knock-in (cKO/KI) epitope-tagged FLAG-FLAG-HA-H3.3B (H3.3BHA) and FLAG-FLAG-HA-H3.3A (H3.3AHA) mouse lines. We show that H3.3B, but not H3.3A, is required for spermatogenesis and male fertility. Analysis of the molecular mechanism unveils that the absence of H3.3B led to alterations in the meiotic/post-meiotic transition. Genome-wide RNA-seq reveals that the depletion of H3.3B in meiotic cells is associated with increased expression of the whole sex X and Y chromosomes as well as of both RLTR10B and RLTR10B2 retrotransposons. In contrast, the absence of H3.3B resulted in down-regulation of the expression of piRNA clusters. ChIP-seq experiments uncover that RLTR10B and RLTR10B2 retrotransposons, the whole sex chromosomes and the piRNA clusters are markedly enriched of H3.3. Taken together, our data dissect the molecular mechanism of H3.3B functions during spermatogenesis and demonstrate that H3.3B, depending on its chromatin localization, is involved in either up-regulation or down-regulation of expression of defined large chromatin regions.


Asunto(s)
Histonas , ARN Interferente Pequeño/metabolismo , Retroelementos , Espermatogénesis , Animales , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Masculino , Ratones , Cromosomas Sexuales/metabolismo
5.
Science ; 372(6549)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34324427

RESUMEN

The Rett syndrome protein MeCP2 was described as a methyl-CpG-binding protein, but its exact function remains unknown. Here we show that mouse MeCP2 is a microsatellite binding protein that specifically recognizes hydroxymethylated CA repeats. Depletion of MeCP2 alters chromatin organization of CA repeats and lamina-associated domains and results in nucleosome accumulation on CA repeats and genome-wide transcriptional dysregulation. The structure of MeCP2 in complex with a hydroxymethylated CA repeat reveals a characteristic DNA shape, with considerably modified geometry at the 5-hydroxymethylcytosine, which is recognized specifically by Arg133, a key residue whose mutation causes Rett syndrome. Our work identifies MeCP2 as a microsatellite DNA binding protein that targets the 5hmC-modified CA-rich strand and maintains genome regions nucleosome-free, suggesting a role for MeCP2 dysfunction in Rett syndrome.


Asunto(s)
Repeticiones de Dinucleótido , Proteína 2 de Unión a Metil-CpG/metabolismo , Repeticiones de Microsatélite , Nucleosomas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Animales , Células Cultivadas , Cromatina/química , Cromatina/metabolismo , Cromatina/ultraestructura , Citosina/química , Citosina/metabolismo , Metilación de ADN , Células Madre Embrionarias/metabolismo , Fibroblastos , Lóbulo Frontal/metabolismo , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Neuronas/metabolismo , Conformación de Ácido Nucleico , Oxidación-Reducción , Unión Proteica , Dominios Proteicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Transcripción Genética
6.
J Mol Biol ; 433(6): 166659, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33010306

RESUMEN

Epigenetic modifications and nucleosome positioning play an important role in modulating gene expression. However, how the patterns of epigenetic modifications and nucleosome positioning are established around promoters is not well understood. Here, we have addressed these questions in a series of genome-wide experiments coupled to a novel bioinformatic analysis approach. Our data reveal a clear correlation between CpG density, promoter activity and accumulation of active or repressive histone marks. CGI boundaries define the chromatin promoter regions that will be epigenetically modified. CpG-rich promoters are targeted by histone modifications and histone variants, while CpG-poor promoters are regulated by DNA methylation. CGIs boundaries, but not transcriptional activity, are essential determinants of H2A.Z positioning in vicinity of the promoters, suggesting that the presence of H2A.Z is not related to transcriptional control. Accordingly, H2A.Z depletion has no impact on gene expression of arrested mouse embryonic fibroblasts. Therefore, the underlying DNA sequence, the promoter CpG density and, to a lesser extent, transcriptional activity, are key factors implicated in promoter chromatin architecture.


Asunto(s)
Islas de CpG , Epigénesis Genética , Epigenoma , Histonas/genética , Regiones Promotoras Genéticas , Procesamiento Proteico-Postraduccional , Animales , Cromatina/metabolismo , Cromatina/ultraestructura , Ensamble y Desensamble de Cromatina , Biología Computacional/métodos , Metilación de ADN , Embrión de Mamíferos , Fibroblastos/citología , Fibroblastos/metabolismo , Histonas/química , Histonas/deficiencia , Histonas/metabolismo , Ratones , Ratones Noqueados , Cultivo Primario de Células , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
7.
Cancers (Basel) ; 12(4)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326644

RESUMEN

The brain tumor microenvironment has recently become a major challenge in all pediatric cancers, but especially in brain tumors like high-grade gliomas. Hypoxia is one of the extrinsic tumor features that interacts with tumor cells, but also with the blood-brain barrier and all normal brain cells. It is the result of a dramatic proliferation and expansion of tumor cells that deprive the tissues of oxygen inflow. However, cancer cells, especially tumor stem cells, can endure extreme hypoxic conditions by rescheduling various genes' expression involved in cell proliferation, metabolism and angiogenesis and thus, promote tumor expansion, therapeutic resistance and metabolic adaptation. This cellular adaptation implies Hypoxia-Inducible Factors (HIF), namely HIF-1α and HIF-2α. In pediatric high-grade gliomas (pHGGs), several questions remained open on hypoxia-specific role in normal brain during gliomagenesis and pHGG progression, as well how to model it in preclinical studies and how it might be counteracted with targeted therapies. Therefore, this review aims to gather various data about this key extrinsic tumor factor in pHGGs.

8.
Nucleic Acids Res ; 48(9): 4601-4613, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32266374

RESUMEN

While the histone variant H2A.Z is known to be required for mitosis, it is also enriched in nucleosomes surrounding the transcription start site of active promoters, implicating H2A.Z in transcription. However, evidence obtained so far mainly rely on correlational data generated in actively dividing cells. We have exploited a paradigm in which transcription is uncoupled from the cell cycle by developing an in vivo system to inactivate H2A.Z in terminally differentiated post-mitotic muscle cells. ChIP-seq, RNA-seq and ATAC-seq experiments performed on H2A.Z KO post-mitotic muscle cells show that this histone variant is neither required to maintain nor to activate transcription. Altogether, this study provides in vivo evidence that in the absence of mitosis H2A.Z is dispensable for transcription and that the enrichment of H2A.Z on active promoters is a marker but not an active driver of transcription.


Asunto(s)
Histonas/fisiología , Músculo Esquelético/metabolismo , Transcripción Genética , Activación Transcripcional , Animales , Diferenciación Celular , Células Cultivadas , Cromatina , Secuenciación de Inmunoprecipitación de Cromatina , Histonas/genética , Histonas/metabolismo , Ratones , Fibras Musculares Esqueléticas , Músculo Esquelético/citología , RNA-Seq , Secuencias Repetitivas de Ácidos Nucleicos , Sitio de Iniciación de la Transcripción
9.
Oncotarget ; 9(47): 28599-28611, 2018 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-29983883

RESUMEN

Down-regulation of UHRF1 (Ubiquitin-like containing PHD and Ring Finger 1) in Jurkat cells, induced by natural anticancer compounds such as thymoquinone, allows re-expression of tumor suppressor genes such as p73 and p16INK4A . In order to decipher the mechanisms of UHRF1 down-regulation, we investigated the kinetic of expression of HAUSP (herpes virus-associated ubiquitin-specific protease), UHRF1, cleaved caspase-3 and p73 in Jurkat cells treated with thymoquinone. We found that thymoquinone induced degradation of UHRF1, correlated with a sharp decrease in HAUSP and an increase in cleaved caspase-3 and p73. UHRF1 concomitantly underwent a rapid ubiquitination in response to thymoquinone and this effect was not observed in the cells expressing mutant UHRF1 RING domain, suggesting that UHRF1 commits an auto-ubiquitination through its RING domain in response to thymoquinone treatment. Exposure of cells to Z-DEVD, an inhibitor of caspase-3 markedly reduced the thymoquinone-induced down-regulation of UHRF1, while proteosomal inhibitor MG132 had no such effect. The present findings indicate that thymoquinone induces in cancer cells a fast UHRF1 auto-ubiquitination through its RING domain associated with HAUSP down-regulation. They further suggest that thymoquinone-induced UHRF1 auto-ubiquitination followed by its degradation is a key event in inducing apoptosis through a proteasome-independent mechanism.

10.
Oncotarget ; 8(31): 51946-51962, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881702

RESUMEN

Cancer is one of the deadliest diseases in the world causing record number of mortalities in both developed and undeveloped countries. Despite a lot of advances and breakthroughs in the field of oncology still, it is very hard to diagnose and treat the cancers at early stages. Here in this review we analyze the potential of Ubiquitin-like containing PHD and Ring Finger domain 1 (UHRF1) as a universal biomarker for cancers. UHRF1 is an important epigenetic regulator maintaining DNA methylation and histone code in the cell. It is highly expressed in a variety of cancers and is a well-known oncogene that can disrupt the epigenetic code and override the senescence machinery. Many studies have validated UHRF1 as a powerful diagnostic and prognostic tool to differentially diagnose cancer, predict the therapeutic response and assess the risk of tumor progression and recurrence. Highly sensitive, non-invasive and cost effective approaches are therefore needed to assess the level of UHRF1 in patients, which can be deployed in diagnostic laboratories to detect cancer and monitor disease progression.

12.
Mol Cell ; 66(3): 384-397.e8, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28475873

RESUMEN

Linker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments. Histone H1 shifts the conformational landscape of the nucleosome by drawing the two linkers together and reducing their flexibility. The H1 C-terminal domain (CTD) localizes primarily to a single linker, while the H1 globular domain contacts the nucleosome dyad and both linkers, associating more closely with the CTD-distal linker. These findings reveal that H1 imparts a strong degree of asymmetry to the nucleosome, which is likely to influence the assembly and architecture of higher-order structures.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Animales , Emparejamiento Base , Sitios de Unión , Cromatina/química , Cromatina/genética , Cromatina/ultraestructura , Microscopía por Crioelectrón , ADN/química , ADN/genética , Histonas/química , Humanos , Modelos Moleculares , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/ultraestructura , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad , Factores de Tiempo , Xenopus laevis/genética , Xenopus laevis/metabolismo
13.
Genome Res ; 27(6): 934-946, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28348165

RESUMEN

DNA methylation is an essential epigenetic modification, present in both unique DNA sequences and repetitive elements, but its exact function in repetitive elements remains obscure. Here, we describe the genome-wide comparative analysis of the 5mC, 5hmC, 5fC, and 5caC profiles of repetitive elements in mouse embryonic fibroblasts and mouse embryonic stem cells. We provide evidence for distinct and highly specific DNA methylation/oxidation patterns of the repetitive elements in both cell types, which mainly affect CA repeats and evolutionarily conserved mouse-specific transposable elements including IAP-LTRs, SINEs B1m/B2m, and L1Md-LINEs. DNA methylation controls the expression of these retroelements, which are clustered at specific locations in the mouse genome. We show that TDG is implicated in the regulation of their unique DNA methylation/oxidation signatures and their dynamics. Our data suggest the existence of a novel epigenetic code for the most recently acquired evolutionarily conserved repeats that could play a major role in cell differentiation.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Fibroblastos/metabolismo , Genoma , Células Madre Embrionarias de Ratones/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Diferenciación Celular , Citosina/análogos & derivados , Citosina/metabolismo , Elementos Transponibles de ADN , Fibroblastos/citología , Ratones , Células Madre Embrionarias de Ratones/citología , Cultivo Primario de Células , Timina ADN Glicosilasa/genética , Timina ADN Glicosilasa/metabolismo
14.
Biochem Cell Biol ; 95(4): 491-499, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28177753

RESUMEN

H3.3 is a histone variant that marks transcription start sites as well as telomeres and heterochromatic sites on the genome. The presence of H3.3 is thought to positively correlate with the transcriptional status of its target genes. Using a conditional genetic strategy against H3.3B, combined with short hairpin RNAs against H3.3A, we essentially depleted all H3.3 gene expression in mouse embryonic fibroblasts. Following nearly complete loss of H3.3 in the cells, our transcriptomic analyses show very little impact on global gene expression or on the localization of histone variant H2A.Z. Instead, fibroblasts displayed slower cell growth and an increase in cell death, coincident with large-scale chromosome misalignment in mitosis and large polylobed or micronuclei in interphase cells. Thus, we conclude that H3.3 may have an important under-explored additional role in chromosome segregation, nuclear structure, and the maintenance of genome integrity.


Asunto(s)
Fibroblastos/metabolismo , Histonas/metabolismo , Mitosis/genética , Animales , Muerte Celular , Núcleo Celular/metabolismo , Proliferación Celular , Células Cultivadas , Segregación Cromosómica , Genoma , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes
15.
PLoS Genet ; 12(7): e1006221, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27467129

RESUMEN

FACT, in addition to its role in transcription, is likely implicated in both transcription-coupled nucleotide excision repair and DNA double strand break repair. Here, we present evidence that FACT could be directly involved in Base Excision Repair and elucidate the chromatin remodeling mechanisms of FACT during BER. We found that, upon oxidative stress, FACT is released from transcription related protein complexes to get associated with repair proteins and chromatin remodelers from the SWI/SNF family. We also showed the rapid recruitment of FACT to the site of damage, coincident with the glycosylase OGG1, upon the local generation of oxidized DNA. Interestingly, FACT facilitates uracil-DNA glycosylase in the removal of uracil from nucleosomal DNA thanks to an enhancement in the remodeling activity of RSC. This discloses a novel property of FACT wherein it has a co-remodeling activity and strongly enhances the remodeling capacity of the chromatin remodelers. Altogether, our data suggest that FACT may acts in concert with RSC to facilitate excision of DNA lesions during the initial step of BER.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Histonas/genética , Transcripción Genética , Factores de Elongación Transcripcional/genética , Animales , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Daño del ADN/genética , Proteínas de Unión al ADN/biosíntesis , Células HeLa , Proteínas del Grupo de Alta Movilidad/biosíntesis , Histonas/metabolismo , Humanos , Nucleosomas/genética , Estrés Oxidativo/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Elongación Transcripcional/biosíntesis , Uracilo/metabolismo , Xenopus laevis
16.
Nat Struct Mol Biol ; 23(4): 309-16, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26974126

RESUMEN

H2A.Z, a widely conserved histone variant, is evicted from chromatin by the histone chaperone ANP32E. However, to date, no deposition chaperone for H2A.Z is known in metazoans. Here, we identify YL1 as a specific H2A.Z-deposition chaperone. The 2.7-Å-resolution crystal structure of the human YL1-H2A.Z-H2B complex shows that YL1 binding, similarly to ANP32E binding, triggers an extension of the H2A.Z αC helix. The interaction with YL1 is, however, more extensive and includes both the extended acidic patch and the entire DNA-binding surface of H2A.Z-H2B. Substitution of only four amino acid residues of H2A is sufficient for the formation of an H2A.Z-like interface specifically recognized by YL1. Collectively, our data reveal the molecular basis of H2A.Z-specific recognition by YL1 and shed light on the mechanism of H2A.Z transfer to the nucleosome by the ATP-dependent chromatin-remodeling complexes SRCAP and P400-TIP60.


Asunto(s)
Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Células HeLa , Histonas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mapas de Interacción de Proteínas , Estructura Secundaria de Proteína
17.
J Biol Chem ; 289(49): 33999-4012, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25336637

RESUMEN

Pontin/RUVBL1 and Reptin/RUVBL2 are DNA-dependent ATPases involved in numerous cellular processes and are essential components of chromatin remodeling complexes and transcription factor assemblies. However, their existence as monomeric and oligomeric forms with differential activity in vivo reflects their versatility. Using a biochemical approach, we have studied the role of the nucleosome core particle and histone N-terminal tail modifications in the assembly and enzymatic activities of Reptin/Pontin. We demonstrate that purified Reptin and Pontin form stable complexes with nucleosomes. The ATPase activity of Reptin/Pontin is modulated by acetylation and methylation of the histone H3 N terminus. In vivo, association of Reptin with the progesterone receptor gene promoter is concomitant with changes in H3 marks of the surrounding nucleosomes. Furthermore, the presence of H3 tail peptides regulates the monomer-oligomer transition of Reptin/Pontin. Proteins that are pulled down by monomeric Reptin/Pontin differ from those that can bind to hexamers. We propose that changes in the oligomeric status of Reptin/Pontin create a platform that brings specific cofactors close to gene promoters and loads regulatory factors to establish an active state of chromatin.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , ADN/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , ADN/química , ADN Helicasas/química , ADN Helicasas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Histonas/química , Histonas/genética , Humanos , Datos de Secuencia Molecular , Nucleosomas/química , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Nature ; 505(7485): 648-53, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24463511

RESUMEN

H2A.Z is an essential histone variant implicated in the regulation of key nuclear events. However, the metazoan chaperones responsible for H2A.Z deposition and its removal from chromatin remain unknown. Here we report the identification and characterization of the human protein ANP32E as a specific H2A.Z chaperone. We show that ANP32E is a member of the presumed H2A.Z histone-exchange complex p400/TIP60. ANP32E interacts with a short region of the docking domain of H2A.Z through a new motif termed H2A.Z interacting domain (ZID). The 1.48 Å resolution crystal structure of the complex formed between the ANP32E-ZID and the H2A.Z/H2B dimer and biochemical data support an underlying molecular mechanism for H2A.Z/H2B eviction from the nucleosome and its stabilization by ANP32E through a specific extension of the H2A.Z carboxy-terminal α-helix. Finally, analysis of H2A.Z localization in ANP32E(-/-) cells by chromatin immunoprecipitation followed by sequencing shows genome-wide enrichment, redistribution and accumulation of H2A.Z at specific chromatin control regions, in particular at enhancers and insulators.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Secuencia de Aminoácidos , Línea Celular , Núcleo Celular/química , Núcleo Celular/metabolismo , Cromatina/genética , Inmunoprecipitación de Cromatina , Cristalografía por Rayos X , ADN/genética , ADN/metabolismo , Genoma Humano/genética , Histonas/química , Histonas/aislamiento & purificación , Humanos , Modelos Moleculares , Chaperonas Moleculares/química , Datos de Secuencia Molecular , Proteínas Nucleares/química , Nucleosomas/química , Nucleosomas/metabolismo , Fosfoproteínas/química , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
19.
FEBS J ; 277(12): 2705-14, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20553504

RESUMEN

TIP49b (reptin) is an essential eukaryotic AAA+ ATPase involved in a variety of cellular processes, such as chromatin remodeling during double-strand break repair, transcriptional regulation, control of cell proliferation and small nucleolar RNA biogenesis. How it acts at the molecular level remains largely unknown. In the present study, we show that both human TIP49b and its yeast orthologue, Rvb2p, cooperatively bind single-stranded DNA as monomers. Binding stimulates a slow ATPase activity and supports a 3'- to 5' DNA unwinding activity that requires a 3'-protruding tail >or= 30 nucleotides. The data obtained indicate that DNA unwinding of 3'- to 5' junctions is also constrained by the length of flanking duplex DNA. By contrast, TIP49b hexamers were found to be inactive for ATP hydrolysis and DNA unwinding, suggesting that, in cells, protein factors that remain unknown might be required to recycle these into an active form.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/metabolismo , ADN de Cadena Simple/metabolismo , Humanos
20.
Scand J Infect Dis ; 42(6-7): 421-5, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20141491

RESUMEN

The identification of Propionibacterium acnes in cultures of bone and joint samples is always difficult to interpret because of the ubiquity of this microorganism. The aim of this study was to propose a diagnostic strategy to distinguish infections from contaminations. This was a retrospective analysis of all patient charts of those patients with >or=1 deep samples culture-positive for P. acnes. Every criterion was tested for sensitivity, specificity, and positive likelihood ratio, and then the diagnostic probability of combinations of criteria was calculated. Among 65 patients, 52 (80%) were considered truly infected with P. acnes, a diagnosis based on a multidisciplinary process. The most valuable diagnostic criteria were: >or=2 positive deep samples, peri-operative findings (necrosis, hardware loosening, etc.), and >or=2 surgical procedures. However, no single criterion was sufficient to ascertain the diagnosis. The following combinations of criteria had a diagnostic probability of >90%: >or=2 positive cultures + 1 criterion among: peri-operative findings, local signs of infection, >or=2 previous operations, orthopaedic devices; 1 positive culture + 3 criteria among: peri-operative findings, local signs of infection, >or=2 previous surgical operations, orthopaedic devices, inflammatory syndrome. The diagnosis of P. acnes osteomyelitis was greatly improved by combining different criteria, allowing differentiation between infection and contamination.


Asunto(s)
Infecciones por Bacterias Grampositivas/microbiología , Osteomielitis/microbiología , Propionibacterium acnes/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Infecciones por Bacterias Grampositivas/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Osteomielitis/diagnóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...