Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38399409

RESUMEN

Differences in the pharmacological effects of (S)-ketamine and (R)-ketamine are at the focus of research. Clinical data and our rat studies confirmed the antidepressant effect of (S)- but not (R)-ketamine, with similar differences in quantitative electroencephalogram (EEG) and sleep effects. In contrast, studies mainly on mice showed some stronger, preferable effects of (R)-ketamine. EEG theta (5-9 Hz) rhythm originates from the hippocampus, and its power is associated with cognitive functions, attention, and decreased anxiety. To find a brain parameter that is not associated with the antidepressant effect of drugs and may confirm potent in vivo effects of (R)-ketamine in rats, theta EEG power-inducing effects of the two enantiomers were measured and compared for 23 h. EEG-equipped Wistar rats were treated with (R)-ketamine (7.5, 15, 30 mg/kg i.p.), (S)-ketamine (7.5 and 15 mg/kg i.p.), or vehicle at the beginning of the passive phase. Frontoparietal EEG, electromyogram, and motor activity were recorded. (R)-ketamine but not (S)-ketamine dose-dependently increased EEG theta power during wakefulness and rapid eye movement (REM) sleep for 23 h. These results suggest that (R)-ketamine has an effect on a hippocampal function that was not affected by (S)-ketamine and may be associated with neural plasticity and memory encoding.

2.
Int J Neuropsychopharmacol ; 26(9): 618-626, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37578355

RESUMEN

BACKGROUND: Racemic ketamine consists of two enantiomers, namely (R)-ketamine and (S)-ketamine, with distinguishable pharmacological properties. Both enantiomers have been reported to show rapid antidepressant effects in rodents. Currently, the (S)-enantiomer has been approved for the treatment of major depression, whereas (R)-ketamine failed to show antidepressant effect in recent clinical studies. Major depressive disorder is frequently characterized by disinhibition of rapid eye movement (REM) sleep and disruption of non-REM (NREM) sleep. Racemic ketamine and most conventional antidepressants affect these parameters. However, it remains largely unknown which enantiomer is responsible for these effects. METHODS: Here, we compared acute effects of the two ketamine enantiomers (15 mg/kg i.p.) on different sleep-wake stages in freely moving, EEG-equipped rats. We also evaluated the antidepressant-like activity of the enantiomers in a chronic restraint stress model of depression. RESULTS: (S)-ketamine but not (R)-ketamine increased REM sleep latency and decreased REM sleep time at 2 and 3 hours, and increased electroencephalogram delta power during NREM sleep. In addition, only (S)-ketamine increased wakefulness and decreased NREM sleep in the first 2 hours. In the forced swimming test, only (S)-ketamine decreased the immobility time of chronically stressed rats. CONCLUSION: Effects of the two ketamine enantiomers on rat sleep-wake architecture and behavior are markedly different when administered in the same dose. (S)-ketamine remarkably affects the sleep-wake cycle and very likely sleep-related neuroplasticity, which may be relevant for its antidepressant efficacy. Our results regarding (R)-ketamine's lack of effect on vigilance and behavior are in line with recent clinical studies.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Ratas , Animales , Ketamina/farmacología , Ketamina/uso terapéutico , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Sueño , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
3.
JCI Insight ; 8(13)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37227782

RESUMEN

Patients with recurrent acute pancreatitis (RAP) are at significant risk of developing early chronic pancreatitis (CP), which progresses into irreversible, end-stage CP with severe symptoms. There is no specific therapy in RAP or in early CP that may hinder disease progression. The pathogenesis of CP is complex and involves interactions among multiple cell types, including pancreatic acinar, ductal, and stellate cells (PSC). Therefore, it is pivotal to identify common pathogenic pathways in these cells that could be targeted pharmacologically. The Orai1-mediated store-operated Ca2+ entry (SOCE) is a ubiquitous signaling mechanism that may become overactivated in pathological states resulting in intracellular Ca2+ overload. In this study, we used ex vivo and in vivo preclinical disease models to demonstrate that Orai1 inhibition prevents progression of RAP and early CP. The selective Orai1 inhibitor CM5480 restored the expression of SOCE-associated regulatory factor in acinar cells, prevented uncontrolled Ca2+ elevation, protected acinar and ductal functions, mitigated immune cell infiltration, and diminished PSC activation, proliferation, and migration. We suggest that the overactivation of Orai1 is a crucial pathogenetic event in the progression of early CP and that inhibition of Orai1 could prevent the development of end-stage CP.


Asunto(s)
Calcio , Pancreatitis Crónica , Humanos , Calcio/metabolismo , Enfermedad Aguda , Canales de Calcio/metabolismo , Proteína ORAI1/metabolismo
4.
Cell Mol Life Sci ; 80(1): 31, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36609875

RESUMEN

BACKGROUND AND AIMS: Thiopurine-induced acute pancreatitis (TIP) is one of the most common adverse events among inflammatory bowel disease patients treated with azathioprine (AZA), representing a significant clinical burden. Previous studies focused on immune-mediated processes, however, the exact pathomechanism of TIP is essentially unclear. METHODS: To model TIP in vivo, we triggered cerulein-induced experimental pancreatitis in mice receiving a daily oral dose of 1.5 mg/kg AZA. Also, freshly isolated mouse pancreatic cells were exposed to AZA ex vivo, and acinar cell viability, ductal and acinar Ca2+ signaling, ductal Cl- and HCO3- secretion, as well as cystic fibrosis transmembrane conductance regulator (CFTR) expression were assessed using microscopy techniques. Ras-related C3 botulinum toxin substrate (RAC1) activity was measured with a G-LISA assay. Super-resolution microscopy was used to determine protein colocalization. RESULTS: We demonstrated that AZA treatment increases tissue damage in the early phase of cerulein-induced pancreatitis in vivo. Also, both per os and ex vivo AZA exposure impaired pancreatic fluid and ductal HCO3- and Cl- secretion, but did not affect acinar cells. Furthermore, ex vivo AZA exposure also inhibited RAC1 activity in ductal cells leading to decreased co-localization of CFTR and the anchor protein ezrin, resulting in impaired plasma membrane localization of CFTR. CONCLUSIONS: AZA impaired the ductal HCO3- and Cl- secretion through the inhibition of RAC1 activity leading to diminished ezrin-CFTR interaction and disturbed apical plasma membrane expression of CFTR. We report a novel direct toxic effect of AZA on pancreatic ductal cells and suggest that the restoration of ductal function might help to prevent TIP in the future.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Pancreatitis , Animales , Ratones , Enfermedad Aguda , Bicarbonatos/metabolismo , Membrana Celular/metabolismo , Ceruletida , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Pancreatitis/inducido químicamente , Pancreatitis/tratamiento farmacológico , Pancreatitis/metabolismo
5.
J Neurosci ; 43(5): 846-862, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564184

RESUMEN

Stress disorders impair sleep and quality of life; however, their pathomechanisms are unknown. Prolactin-releasing peptide (PrRP) is a stress mediator; we therefore hypothesized that PrRP may be involved in the development of stress disorders. PrRP is produced by the medullary A1/A2 noradrenaline (NA) cells, which transmit stress signals to forebrain centers, and by non-NA cells in the hypothalamic dorsomedial nucleus. We found in male rats that both PrRP and PrRP-NA cells innervate melanin-concentrating hormone (MCH) producing neurons in the dorsolateral hypothalamus (DLH). These cells serve as a key hub for regulating sleep and affective states. Ex vivo, PrRP hyperpolarized MCH neurons and further increased the hyperpolarization caused by NA. Following sleep deprivation, intracerebroventricular PrRP injection reduced the number of REM sleep-active MCH cells. PrRP expression in the dorsomedial nucleus was upregulated by sleep deprivation, while downregulated by REM sleep rebound. Both in learned helplessness paradigm and after peripheral inflammation, impaired coping with sustained stress was associated with (1) overactivation of PrRP cells, (2) PrRP protein and receptor depletion in the DLH, and (3) dysregulation of MCH expression. Exposure to stress in the PrRP-insensitive period led to increased passive coping with stress. Normal PrRP signaling, therefore, seems to protect animals against stress-related disorders. PrRP signaling in the DLH is an important component of the PrRP's action, which may be mediated by MCH neurons. Moreover, PrRP receptors were downregulated in the DLH of human suicidal victims. As stress-related mental disorders are the leading cause of suicide, our findings may have particular translational relevance.SIGNIFICANCE STATEMENT Treatment resistance to monoaminergic antidepressants is a major problem. Neuropeptides that modulate the central monoaminergic signaling are promising targets for developing alternative therapeutic strategies. We found that stress-responsive prolactin-releasing peptide (PrRP) cells innervated melanin-concentrating hormone (MCH) neurons that are crucial in the regulation of sleep and mood. PrRP inhibited MCH cell activity and enhanced the inhibitory effect evoked by noradrenaline, a classic monoamine, on MCH neurons. We observed that impaired PrRP signaling led to failure in coping with chronic/repeated stress and was associated with altered MCH expression. We found alterations of the PrRP system also in suicidal human subjects. PrRP dysfunction may underlie stress disorders, and fine-tuning MCH activity by PrRP may be an important part of the mechanism.


Asunto(s)
Hormonas Hipotalámicas , Privación de Sueño , Ratas , Masculino , Humanos , Animales , Hormona Liberadora de Prolactina/farmacología , Hormona Liberadora de Prolactina/metabolismo , Privación de Sueño/metabolismo , Trastornos del Humor/etiología , Calidad de Vida , Ratas Wistar , Hormonas Hipotalámicas/metabolismo , Sueño/fisiología , Neuronas/fisiología , Norepinefrina/metabolismo
6.
Cell Mol Life Sci ; 79(5): 265, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484438

RESUMEN

Alcoholic pancreatitis and hepatitis are frequent, potentially lethal diseases with limited treatment options. Our previous study reported that the expression of CFTR Cl- channel is impaired by ethanol in pancreatic ductal cells leading to more severe alcohol-induced pancreatitis. In addition to determining epithelial ion secretion, CFTR has multiple interactions with other proteins, which may influence intracellular Ca2+ signaling. Thus, we aimed to investigate the impact of ethanol-mediated CFTR damage on intracellular Ca2+ homeostasis in pancreatic ductal epithelial cells and cholangiocytes. Human and mouse pancreas and liver samples and organoids were used to study ion secretion, intracellular signaling, protein expression and interaction. The effect of PMCA4 inhibition was analyzed in a mouse model of alcohol-induced pancreatitis. The decreased CFTR expression impaired PMCA function and resulted in sustained intracellular Ca2+ elevation in ethanol-treated and mouse and human pancreatic organoids. Liver samples derived from alcoholic hepatitis patients and ethanol-treated mouse liver organoids showed decreased CFTR expression and function, and impaired PMCA4 activity. PMCA4 co-localizes and physically interacts with CFTR on the apical membrane of polarized epithelial cells, where CFTR-dependent calmodulin recruitment determines PMCA4 activity. The sustained intracellular Ca2+ elevation in the absence of CFTR inhibited mitochondrial function and was accompanied with increased apoptosis in pancreatic epithelial cells and PMCA4 inhibition increased the severity of alcohol-induced AP in mice. Our results suggest that improving Ca2+ extrusion in epithelial cells may be a potential novel therapeutic approach to protect the exocrine pancreatic function in alcoholic pancreatitis and prevent the development of cholestasis in alcoholic hepatitis.


Asunto(s)
Hepatitis Alcohólica , Hepatitis , Pancreatitis Alcohólica , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Células Epiteliales/metabolismo , Etanol/toxicidad , Hepatitis/metabolismo , Hepatitis Alcohólica/genética , Hepatitis Alcohólica/metabolismo , Humanos , Ratones , Pancreatitis Alcohólica/metabolismo
7.
J Physiol ; 600(7): 1631-1650, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35081662

RESUMEN

Regardless of its aetiology, sustained intracellular Ca2+ overload is a well-known hallmark of acute pancreatitis (AP). Toxic Ca2+ elevation induces pancreatic ductal cell damage characterized by impaired ion and fluid secretion - essential to wash out the protein-rich fluid secreted by acinar cells while maintaining the alkaline intra-ductal pH under physiological conditions - and mitochondrial dysfunction. While prevention of ductal cell injury decreases the severity of AP, no specific drug target has yet been identified in the ductal cells. Although Orai1, a store-operated Ca2+ influx channel, is known to contribute to sustained Ca2+ overload in acinar cells, details concerning its expression and function in ductal cells are currently lacking. In this study, we demonstrate that functionally active Orai1 channels reside predominantly in the apical plasma membrane of pancreatic ductal cells. Selective CM5480-mediated Orai1 inhibition impairs Stim1-dependent extracellular Ca2+ influx evoked by bile acids or ethanol combined with non-oxidative ethanol metabolites. Furthermore, prevention of sustained extracellular Ca2+ influx protects ductal cell secretory function in vitro and decreases pancreatic ductal cell death. Finally, Orai1 inhibition partially restores and maintains proper exocrine pancreatic secretion in in vivo AP models. In conclusion, our results indicate that Orai1 inhibition prevents AP-related ductal cell function impairment and holds the potential of improving disease outcome. KEY POINTS: Sustained intracellular Ca2+ overload in pancreatic acinar and ductal cells is a hallmark of biliary and alcohol-induced acute pancreatitis, which leads to impaired ductal ion and fluid secretion. Orai1 is a plasma membrane Ca2+ channel that mediates extracellular Ca2+ influx upon endoplasmic reticulum Ca2+ depletion. Results showed that Orai1 is expressed on the luminal plasma membrane of the ductal cells and selective Orai1 inhibition impaired Stim1-dependent extracellular Ca2+ influx evoked by bile acids or ethanol combined with non-oxidative ethanol metabolites. The prevention of sustained extracellular Ca2+ influx protected ductal cell secretory functions in in vitro models and maintained exocrine pancreatic secretion in in vivo acute pancreatitis models. Orai1 inhibition prevents the bile acid- and alcohol-induced damage of the pancreatic ductal secretion and holds the potential of improving the outcome of acute pancreatitis.


Asunto(s)
Pancreatitis , Enfermedad Aguda , Ácidos y Sales Biliares/toxicidad , Calcio/metabolismo , Señalización del Calcio , Etanol/toxicidad , Humanos , Proteína ORAI1/antagonistas & inhibidores , Pancreatitis/tratamiento farmacológico , Pancreatitis/etiología , Pancreatitis/metabolismo , Molécula de Interacción Estromal 1/metabolismo
8.
Pharmaceuticals (Basel) ; 14(5)2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34064349

RESUMEN

Tramadol is a widely used, centrally acting, opioid analgesic compound, with additional inhibitory effects on the synaptic reuptake of serotonin and noradrenaline, as well as on the 5-HT2 and NMDA receptors. Preclinical and clinical evidence also suggests its therapeutic potential in the treatment of depression and anxiety. The effects of most widely used antidepressants on sleep and quantitative electroencephalogram (qEEG) are well characterized; however, such studies of tramadol are scarce. Our aim was to characterize the effects of tramadol on sleep architecture and qEEG in different sleep-wake stages. EEG-equipped Wistar rats were treated with tramadol (0, 5, 15 and 45 mg/kg) at the beginning of the passive phase, and EEG, electromyogram and motor activity were recorded. Tramadol dose-dependently reduced the time spent in rapid eye movement (REM) sleep and increased the REM onset latency. Lower doses of tramadol had wake-promoting effects in the first hours, while 45 mg/kg of tramadol promoted sleep first, but induced wakefulness thereafter. During non-REM sleep, tramadol (15 and 45 mg/kg) increased delta and decreased alpha power, while all doses increased gamma power. In conclusion, the sleep-related and qEEG effects of tramadol suggest antidepressant-like properties, including specific beneficial effects in selected patient groups, and raise the possibility of a faster acting antidepressant action.

9.
Front Pharmacol ; 10: 831, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31404291

RESUMEN

Study Objectives: (a) To describe the microarchitecture of wakefulness and sleep following administrations of 5- and 10-mg/kg AM-251 in rats. (b) To develop a new statistical method to follow bout-to-bout dynamics. Method: Wistar rats (n = 6) had been equipped with electroencephalography (EEG) and electromyography (EMG) electrodes. Following their recovery and habituation after the surgery, the animals were injected with vehicle and 5- and 10-mg/kg AM-251 intraperitoneally and EEG, EMG, and motor activity were analyzed for the subsequent 3 h. Results: AM-251 induced a dose- and time-dependent increase in the number of bouts in active wake (AW), and it decreased this number in all other vigilance states except in passive wake (PW). In contrast, the bout duration in PW compensatory decreased. The effect of AM-251 on the sleep transition dynamics was monitored with a new tool we call "transition heatmap." The analysis of bout trajectories with transition heatmaps reveals a highly organized pattern. Conclusion: AM-251 selectively influences the frequency of vigilance state transitions, but it has no direct impact on the state lengths. AM-251 markedly changed the state transition dynamics, which was visualized with the help of state transition heatmaps.

10.
BMC Neurosci ; 20(1): 14, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30894126

RESUMEN

BACKGROUND: Previous data show that serotonin 2C (5-HT2C) and cannabinoid 1 (CB1) receptors have a role in the modulation of sleep-wake cycle. Namely, antagonists on these receptors promoted wakefulness and inhibited rapid eye movement sleep (REMS) in rodents. The interaction of these receptors are also present in other physiological functions, such as the regulation of appetite. Blockade of 5-HT2C receptors modulat the effect of CB1 receptor antagonist, presumably in consecutive or interdependent steps. Here we investigate, whether previous blockade of 5-HT2C receptors can affect CB1 receptor functions in the sleep-wake regulation. RESULTS: Wistar rats were equipped with electroencephalography (EEG) and electromyography (EMG) electrodes. Following the recovery and habituation after surgery, animals were injected intraperitoneally (ip.) with SB-242084, a 5-HT2C receptor antagonist (1.0 mg/kg) at light onset (beginning of passive phase) followed by an injection with AM-251, a CB1 receptor antagonist (5.0 or 10.0 mg/kg, ip.) 10 min later. EEG, EMG and motor activity were analyzed for the subsequent 2 h. Both SB-242084 and AM-251 increased the time spent in active wakefulness, while decreased the time spent in non-REMS and REMS stages in the first 2 h of passive phase. In combination, the effect of the agents were additive, furthermore, statistical analysis did not show any interaction between the effects of these drugs in the modulation of vigilance stages. CONCLUSIONS: Our results suggest that 5-HT2C receptor blockade followed by blockade of CB1 receptors evoked additive effect on the regulation of sleep-wake pattern.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Sueño/efectos de los fármacos , Promotores de la Vigilia/farmacología , Vigilia/efectos de los fármacos , Aminopiridinas/farmacología , Animales , Sinergismo Farmacológico , Electroencefalografía , Electromiografía , Indoles/farmacología , Masculino , Piperidinas/farmacología , Pirazoles/farmacología , Ratas Wistar , Receptor Cannabinoide CB1/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Sueño/fisiología , Vigilia/fisiología
11.
Front Pharmacol ; 10: 1636, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32063851

RESUMEN

Serotonin 2C receptors (5-HT2CRs) are implicated in the pathomechanism and treatment of anxiety and depression. Recently, as a new biomarker of depression, alterations in the gamma power of the electroencephalogram (EEG) have been suggested. Chronic treatment with the selective serotonin reuptake inhibitor (SSRI) antidepressant escitalopram has been shown to cause sleep-wake stage-dependent alterations in gamma power. However, despite the antidepressant potency of 5-HT2CR-antagonists, there is no data available regarding the effects of selective 5-HT2CR-antagonists on gamma activity. Therefore, we investigate the acute effect of the 5-HT2CR-antagonist SB-242084 on gamma power in different vigilance stages when given in monotherapy, or in combination with chronic escitalopram treatment. We administered SB-242084 (1 mg/kg, intraperitoneally) or vehicle to EEG-equipped rats after a 21-day-long pretreatment with escitalopram (10 mg/kg/day, via osmotic minipumps) or vehicle. Frontoparietal EEG, electromyogram, and motor activity were recorded during the first 3 h of passive phase, after the administration of SB-242084. Quantitative EEG analysis revealed that acute SB-242084 increased gamma power (30-60 Hz) in light and deep slow-wave sleep, and passive wakefulness. However, in active wakefulness, rapid eye movement sleep, and intermediate stage, no change was observed in gamma power. The profile of the effect of SB-242084 on gamma power was similar to that produced by chronic escitalopram. Moreover, SB-242084 did not alter chronic escitalopram-induced effects on gamma. In conclusion, the similarity in the effect of the 5-HT2CR-antagonist and chronic SSRI on gamma power provides further evidence for the therapeutic potential of 5-HT2CR-antagonists in the treatment of depression and/or anxiety.

12.
Eur J Pharm Sci ; 121: 347-355, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-29908300

RESUMEN

Brain oscillations in the gamma frequency band of the electroencephalogram (EEG) have been implicated in several sensory and cognitive processes, and have also been associated with numerous neuropsychiatric disorders, including depression. The widely prescribed selective serotonin reuptake inhibitors (SSRIs), similarly to other antidepressants, are known to produce markedly different effects on sleep and behavioral measures with acute and chronic administration. Although there are studies examining the acute effect of escitalopram on slower (<30 Hz) oscillations, we hardly could find any data about the effect of the drug on higher-frequency EEG oscillations (>30 Hz) in different sleep-wake stages, particularly comparing the acute and chronic effects of the drug concerning gamma oscillations. Our aim was to investigate, how escitalopram affects gamma power in different sleep-wake stages, and to discover possible differential effects between acute and chronic treatment. EEG-equipped Wistar rats were treated with escitalopram or vehicle acutely (10 mg/kg, i.p.) or chronically (10 mg/kg/day for 21 days, osmotic minipumps) and frontoparietal EEG, electromyogram and motor activity were recorded during the first 3 h of passive phase. We found that acute and chronic escitalopram treatment affected gamma oscillations differently. While acute escitalopram caused a reduction in gamma power during rapid eye movement sleep (REMS) and intermediate stage of sleep (IS), chronic treatment caused an elevation in gamma power during non-REMS stages, namely in light and deep slow-wave sleep (SWS-1 and SWS-2, respectively) and in IS. However, gamma activity during active and passive wakefulness (AW and PW, respectively) was not influenced by either acute or chronic dosing of escitalopram. Furthermore, we found that in drug-free (vehicle-treated) rats, a relatively high gamma power was present during wakefulness and REMS, while a much lower power was measured during non-REMS stages. These findings indicate that acute and chronic administration of escitalopram alter gamma activity differently, moreover, in a sleep-wake stage dependent manner that may be related to differential therapeutic and/or side effects.


Asunto(s)
Antidepresivos/administración & dosificación , Citalopram/administración & dosificación , Electroencefalografía/efectos de los fármacos , Fases del Sueño/efectos de los fármacos , Animales , Esquema de Medicación , Electromiografía , Masculino , Ratas Wistar
13.
Front Cell Neurosci ; 11: 401, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29311832

RESUMEN

During neural tissue genesis, neural stem/progenitor cells are exposed to bioelectric stimuli well before synaptogenesis and neural circuit formation. Fluctuations in the electrochemical potential in the vicinity of developing cells influence the genesis, migration and maturation of neuronal precursors. The complexity of the in vivo environment and the coexistence of various progenitor populations hinder the understanding of the significance of ionic/bioelectric stimuli in the early phases of neuronal differentiation. Using optogenetic stimulation, we investigated the in vitro motility responses of radial glia-like neural stem/progenitor populations to ionic stimuli. Radial glia-like neural stem cells were isolated from CAGloxpStoploxpChR2(H134)-eYFP transgenic mouse embryos. After transfection with Cre-recombinase, ChR2(channelrhodopsin-2)-expressing and non-expressing cells were separated by eYFP fluorescence. Expression of light-gated ion channels were checked by patch clamp and fluorescence intensity assays. Neurogenesis by ChR2-expressing and non-expressing cells was induced by withdrawal of EGF from the medium. Cells in different (stem cell, migrating progenitor and maturing precursor) stages of development were illuminated with laser light (λ = 488 nm; 1.3 mW/mm2; 300 ms) in every 5 min for 12 h. The displacement of the cells was analyzed on images taken at the end of each light pulse. Results demonstrated that the migratory activity decreased with the advancement of neuronal differentiation regardless of stimulation. Light-sensitive cells, however, responded on a differentiation-dependent way. In non-differentiated ChR2-expressing stem cell populations, the motility did not change significantly in response to light-stimulation. The displacement activity of migrating progenitors was enhanced, while the motility of differentiating neuronal precursors was markedly reduced by illumination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...