Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Pathol ; 176(2): 881-92, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20056834

RESUMEN

Immune mediators and leukocyte engagement of brain microvascular endothelial cells (BMVECs) contribute to blood-brain barrier impairment during neuroinflammation. Glycogen synthase kinase 3beta (GSK3beta) was recently identified as a potent regulator of immune responses in in vitro systems and animal models. However, the role of GSK3beta in regulation of immune endothelial functions remains undetermined. Here we evaluated the effect of GSK3beta inhibition on the regulation of inflammatory responses in BMVECs. A focused PCR gene array of 84 genes was performed to identify the cytokine and chemokine gene expression profile in tumor necrosis factor (TNF) alpha-stimulated BMVECs after GSK3beta inactivation by specific inhibitors. Fifteen of 39 genes induced by TNFalpha stimulation were down-regulated after GSK3beta inhibition. Genes known to contribute to neuroinflammation that were most negatively affected by GSK3beta inactivation included IP-10/CXCL10, MCP-1/CCL2, IL-8/CXCL8, RANTES/CCL5, and Groalpha/CXCL1. GSK3beta suppression resulted in diminished secretion of these proinflammatory mediators by inflamed BMVECs detected by ELISA. GSK3beta inhibition in BMVECs reduced adhesion molecule expression as well as monocyte adhesion to and migration across cytokine stimulated BMVEC monolayers. Interactions of monocytes with TNFalpha-activated BMVECs led to barrier disruption, and GSK3beta suppression in the endothelium restored barrier integrity. GSK3beta inhibition in vivo substantially decreased leukocyte adhesion to brain endothelium under inflammatory conditions. In summary, inhibition of GSK3beta emerges as an important target for stabilization of the blood-brain barrier in neuroinflammation.


Asunto(s)
Encéfalo/efectos de los fármacos , Encefalitis/patología , Células Endoteliales/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Complejo SIDA Demencia/tratamiento farmacológico , Complejo SIDA Demencia/metabolismo , Complejo SIDA Demencia/patología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Estudios de Casos y Controles , Adhesión Celular/efectos de los fármacos , Células Cultivadas , Evaluación Preclínica de Medicamentos , Encefalitis/prevención & control , Células Endoteliales/inmunología , Glucógeno Sintasa Quinasa 3 beta , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Tiadiazoles/farmacología , Tiadiazoles/uso terapéutico , Tiazoles/farmacología , Tiazoles/uso terapéutico , Urea/análogos & derivados , Urea/farmacología , Urea/uso terapéutico
2.
J Cereb Blood Flow Metab ; 29(12): 1933-45, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19654589

RESUMEN

Methamphetamine (METH), a potent stimulant with strong euphoric properties, has a high abuse liability and long-lasting neurotoxic effects. Recent studies in animal models have indicated that METH can induce impairment of the blood-brain barrier (BBB), thus suggesting that some of the neurotoxic effects resulting from METH abuse could be the outcome of barrier disruption. In this study, we provide evidence that METH alters BBB function through direct effects on endothelial cells and explore possible underlying mechanisms leading to endothelial injury. We report that METH increases BBB permeability in vivo, and exposure of primary human brain microvascular endothelial cells (BMVEC) to METH diminishes the tightness of BMVEC monolayers in a dose- and time-dependent manner by decreasing the expression of cell membrane-associated tight junction (TJ) proteins. These changes were accompanied by the enhanced production of reactive oxygen species, increased monocyte migration across METH-treated endothelial monolayers, and activation of myosin light chain kinase (MLCK) in BMVEC. Antioxidant treatment attenuated or completely reversed all tested aspects of METH-induced BBB dysfunction. Our data suggest that BBB injury is caused by METH-mediated oxidative stress, which activates MLCK and negatively affects the TJ complex. These observations provide a basis for antioxidant protection against brain endothelial injury caused by METH exposure.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/efectos adversos , Células Endoteliales/efectos de los fármacos , Metanfetamina/metabolismo , Estrés Oxidativo , Animales , Antioxidantes/uso terapéutico , Barrera Hematoencefálica/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Estimulantes del Sistema Nervioso Central/metabolismo , Cromanos/uso terapéutico , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/citología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Humanos , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos NOD , Monocitos/citología , Monocitos/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
3.
AIDS ; 22(13): 1539-49, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18670212

RESUMEN

OBJECTIVE: Poor penetration of antiretroviral therapy across the blood-brain barrier poses an impediment on control of HIV-1 infection in brain macrophages. Peroxisome proliferator-activated receptor (PPAR)-gamma, a member of the nuclear receptors family, regulates important physiological functions (including anti-inflammatory effects) in response to ligand-mediated activation. As PPARgamma agonists are rapidly absorbed by oral administration and efficiently permeate the blood-brain barrier, we hypothesized that PPARgamma stimulation may suppress HIV-1 replication. DESIGN AND METHODS: We investigated the effect of PPARgamma ligand (rosiglitazone) on HIV-1 replication in human monocyte-derived macrophages and in vivo using a murine model (immunodeficient mice reconstituted with human lymphocytes and intracerebrally inoculated with HIV-1 infected macrophages) of HIV-1 encephalitis. RESULTS: Treatment with rosiglitazone caused a significant decrease of virus infection in macrophages. PPARgamma stimulation inhibited virus replication by modulating NF-kappaB activation in a receptor-dependent manner, leading to downregulation of HIV-1 long terminal repeat (LTR) promoter activity and suppression of HIV-1 replication. These effects were PPARgamma specific as PPARgamma silencing or addition of PPARgamma antagonist abolished effects of PPARgamma stimulation on HIV-1 LTR and virus replication. Using a murine model for HIV-1 encephalitis, we demonstrated that PPARgamma ligand suppressed HIV-1 replication in macrophages in brain tissue and reduced viremia by 50%. CONCLUSION: In vitro data delineated the novel mechanism by which PPARgamma activation suppresses HIV-1 replication, and in vivo findings underscored the ability of PPARgamma agonists to reduce HIV-1 replication in lymphocytes and brain macrophages, thus offering a new therapeutic intervention in brain and systemic infection.


Asunto(s)
Complejo SIDA Demencia/tratamiento farmacológico , PPAR gamma/agonistas , Tiazolidinedionas/uso terapéutico , Animales , Encéfalo/virología , Células Cultivadas , Duplicado del Terminal Largo de VIH/efectos de los fármacos , VIH-1/efectos de los fármacos , Humanos , Macrófagos/virología , Ratones , Ratones SCID , Modelos Animales , FN-kappa B/metabolismo , PPAR gamma/genética , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , Rosiglitazona , Viremia/tratamiento farmacológico , Replicación Viral/efectos de los fármacos
4.
Virus Res ; 131(1): 1-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17850910

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) replication and transcription activator (RTA) is necessary and sufficient for the switch from KSHV latency to lytic replication. RTA activates promoters by several mechanisms. RTA can bind to sequences in viral promoters and activate transcription. In addition, RTA interacts with the cellular recombination signal sequence-binding protein-J kappa (RBP-Jkappa), a transcriptional repressor, converts the repressor into an activator and activates viral promoters via RBP-Jkappa. Because RBP-Jkappa is required for RTA to activate lytic replication, it is important to understand how RTA cooperates with RBP-Jkappa protein to activate KSHV lytic replication program. Previously, we identified an RTA mutant, RTA-K152E, which has a defect in its direct DNA-binding activity. In this report, the effect of the mutant RTA on KSHV activation via RBP-Jkappa protein is examined. We demonstrate that RTA-K152E interacts with RBP-Jkappa physically and the mutant RTA and RBP-Jkappa complex binds to target DNA properly in vivo and in vitro. However, the complex of RTA-K152E and RBP-Jkappa does not activate transcription. Furthermore, the RTA mutant (RTA-K12E) inhibits cellular Notch-mediated RBP-Jkappa activation. These data collectively suggest that the complex between KSHV RTA and cellular RBP-Jkappa and the subsequent DNA binding by the complex are not sufficient for the activation of RBP-Jkappa protein. Other factor(s) whether additional cofactor(s) in the complex or the intrinsic conformation of RTA, are predicted to be required for the activation of RBP-Jkappa protein by RTA.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Herpesvirus Humano 8/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Transducción de Señal/fisiología , Transactivadores/fisiología , Replicación Viral , Línea Celular , Proteínas de Unión al ADN/química , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA