Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Intervalo de año de publicación
1.
Nat Commun ; 14(1): 995, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813782

RESUMEN

The rising incidence of non-ST-segment elevation myocardial infarction (NSTEMI) and associated long-term high mortality constitutes an urgent clinical issue. Unfortunately, the study of possible interventions to treat this pathology lacks a reproducible pre-clinical model. Indeed, currently adopted small and large animal models of MI mimic only full-thickness, ST-segment-elevation (STEMI) infarcts, and hence cater only for an investigation into therapeutics and interventions directed at this subset of MI. Thus, we develop an ovine model of NSTEMI by ligating the myocardial muscle at precise intervals parallel to the left anterior descending coronary artery. Upon histological and functional investigation to validate the proposed model and comparison with STEMI full ligation model, RNA-seq and proteomics show the distinctive features of post-NSTEMI tissue remodelling. Transcriptome and proteome-derived pathway analyses at acute (7 days) and late (28 days) post-NSTEMI pinpoint specific alterations in cardiac post-ischaemic extracellular matrix. Together with the rise of well-known markers of inflammation and fibrosis, NSTEMI ischaemic regions show distinctive patterns of complex galactosylated and sialylated N-glycans in cellular membranes and extracellular matrix. Identifying such changes in molecular moieties accessible to infusible and intra-myocardial injectable drugs sheds light on developing targeted pharmacological solutions to contrast adverse fibrotic remodelling.


Asunto(s)
Infarto del Miocardio , Infarto del Miocardio sin Elevación del ST , Infarto del Miocardio con Elevación del ST , Animales , Ovinos , Infarto del Miocardio sin Elevación del ST/terapia , Vasos Coronarios , Matriz Extracelular , Factores de Riesgo
2.
Int J Mol Sci ; 23(17)2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36077240

RESUMEN

Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.


Asunto(s)
COVID-19 , Virus , Glicoconjugados/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Ácido N-Acetilneuramínico/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2 , Ácidos Siálicos/metabolismo , Sulfatos , Acoplamiento Viral , Virus/metabolismo
3.
Glycoconj J ; 39(1): 107-130, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35254602

RESUMEN

Using a partial hippocampal cholinergic denervation model, we assessed the effects of the RGTA® named OTR4132, a synthetic heparan-mimetic biopolymer with neuroprotective/neurotrophic properties. Long-Evans male rats were injected with the cholinergic immunotoxin 192 IgG-saporin into the medial septum/diagonal band of Broca (0.37 µg); vehicle injections served as controls. Immediately after surgery, OTR4132 was injected into the lateral ventricles (0.25 µg/5 µl/rat) or intramuscularly (1.5 mg/kg). To determine whether OTR4132 reached the lesion site, some rats received intracerebroventricular (ICV) or intramuscular (I.M.) injections of fluorescent OTR4132. Rats were sacrificed at 4, 10, 20, or 60 days post-lesion (DPL). Fluorescein-labeled OTR4132 injected ICV or I.M. was found in the lesion from 4 to 20 DPL. Rats with partial hippocampal cholinergic denervation showed decreases in hippocampal acetylcholinesterase reaction products and in choline acetyltransferase-positive neurons in the medial septum. These lesions were the largest at 10 DPL and then remained stable until 60 DPL. Both hippocampal acetylcholinesterase reaction products and choline acetyltransferase-positive neurons in the medial septum effects were significantly attenuated in OTR4132-treated rats. These effects were not related to competition between OTR4132 and 192 IgG-saporin for the neurotrophin receptor P75 (p75NTR), as OTR4132 treatment did not alter the internalization of Cy3-labelled 192 IgG. OTR4132 was more efficient at reducing the acetylcholinesterase reaction products and choline acetyltransferase-positive neurons than a comparable heparin dose used as a comparator. Using the slice superfusion technique, we found that the lesion-induced decrease in muscarinic autoreceptor sensitivity was abolished by intramuscular OTR4132. After partial cholinergic damage, OTR4132 was able to concentrate at the brain lesion site possibly due to the disruption of the blood-brain barrier and to exert structural and functional effects that hold promises for neuroprotection/neurotrophism.


Asunto(s)
Acetilcolinesterasa , Glicosaminoglicanos , Animales , Colinérgicos/farmacología , Glicosaminoglicanos/farmacología , Masculino , Ratas , Ratas Long-Evans , Proteínas Inactivadoras de Ribosomas Tipo 1
4.
BBA Adv ; 2: 100035, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37082595

RESUMEN

Cellular protein homeostasis (proteostasis) requires an accurate balance between protein biosynthesis, folding, and degradation, and its instability is causally related to human diseases and cancers. Here, we created numerous engineered cancer cell lines targeting APP (amyloid ß precursor protein) and/or PRNP (cellular prion) genes and we showed that APP knocking-down impaired PRNP mRNA level and vice versa, suggesting a link between their gene regulation. PRNPKD, APPKD and PRNPKD/APPKD HeLa cells encountered major difficulties to grow in a 3D tissue-like environment. Unexpectedly, we found a cytoplasmic accumulation of the PrPc protein without PRNP gene up regulation, in both APPKD and APPKO HeLa cells. Interestingly, APP and/or PRNP gene ablation enhanced the chaperone/serine protease HTRA2 gene expression, which is a protein processing quality factor involved in Alzheimer's disease. Importantly, HTRA2 gene silencing decreased PRNP mRNA level and lowered PrPc protein amounts, and conversely, HTRA2 overexpression increased PRNP gene regulation and enhanced membrane-anchored and cytoplasmic PrPc fractions. PrPc, APP and HTRA2 destabilized membrane-associated CD24 protein, suggesting changes in the lipid raft structure. Our data show for the first time that APP and the dual chaperone/serine protease HTRA2 protein could modulate PrPc proteostasis hampering cancer cell behavior.

5.
Nat Commun ; 12(1): 3495, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108486

RESUMEN

Lysosomal storage disorders characterized by altered metabolism of heparan sulfate, including Mucopolysaccharidosis (MPS) III and MPS-II, exhibit lysosomal dysfunctions leading to neurodegeneration and dementia in children. In lysosomal storage disorders, dementia is preceded by severe and therapy-resistant autistic-like symptoms of unknown cause. Using mouse and cellular models of MPS-IIIA, we discovered that autistic-like behaviours are due to increased proliferation of mesencephalic dopamine neurons originating during embryogenesis, which is not due to lysosomal dysfunction, but to altered HS function. Hyperdopaminergia and autistic-like behaviours are corrected by the dopamine D1-like receptor antagonist SCH-23390, providing a potential alternative strategy to the D2-like antagonist haloperidol that has only minimal therapeutic effects in MPS-IIIA. These findings identify embryonic dopaminergic neurodevelopmental defects due to altered function of HS leading to autistic-like behaviours in MPS-II and MPS-IIIA and support evidence showing that altered HS-related gene function is causative of autism.


Asunto(s)
Trastorno del Espectro Autista/metabolismo , Dopamina/metabolismo , Heparitina Sulfato/metabolismo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/patología , Benzazepinas/uso terapéutico , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Antagonistas de Dopamina/uso terapéutico , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Heparitina Sulfato/farmacología , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/patología , Mesencéfalo/efectos de los fármacos , Mesencéfalo/embriología , Mesencéfalo/patología , Ratones , Mucopolisacaridosis III/tratamiento farmacológico , Mucopolisacaridosis III/metabolismo , Mucopolisacaridosis III/patología , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/metabolismo
6.
Mol Cell Biochem ; 476(10): 3815-3825, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34110554

RESUMEN

Chagas and COVID-19 are diseases caused by Trypanosoma cruzi and SARS-CoV-2, respectively. These diseases present very different etiological agents despite showing similarities such as susceptibility/risk factors, pathogen-associated molecular patterns (PAMPs), recognition of glycosaminoglycans, inflammation, vascular leakage hypercoagulability, microthrombosis, and endotheliopathy; all of which suggest, in part, treatments with similar principles. Here, both diseases are compared, focusing mainly on the characteristics related to dysregulated immunothrombosis. Given the in-depth investigation of molecules and mechanisms related to microthrombosis in COVID-19, it is necessary to reconsider a prompt treatment of Chagas disease with oral anticoagulants.


Asunto(s)
Anticoagulantes/uso terapéutico , COVID-19/patología , Enfermedad de Chagas/patología , Heparitina Sulfato/uso terapéutico , Trombosis/tratamiento farmacológico , Trombosis/patología , Plaquetas/inmunología , COVID-19/inmunología , Enfermedad de Chagas/inmunología , Activación de Complemento/inmunología , Endotelio/patología , Humanos , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Activación Plaquetaria/inmunología , SARS-CoV-2/inmunología , Trypanosoma cruzi/inmunología
7.
Sci Transl Med ; 13(581)2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33597263

RESUMEN

Ischemic heart disease is a leading cause of mortality due to irreversible damage to cardiac muscle. Inspired by the post-ischemic microenvironment, we devised an extracellular matrix (ECM)-mimicking hydrogel using catalyst-free click chemistry covalent bonding between two elastin-like recombinamers (ELRs). The resulting customized hydrogel included functional domains for cell adhesion and protease cleavage sites, sensitive to cleavage by matrix metalloproteases overexpressed after myocardial infarction (MI). The scaffold permitted stromal cell invasion and endothelial cell sprouting in vitro. The incidence of non-transmural infarcts has increased clinically over the past decade, and there is currently no treatment preventing further functional deterioration in the infarcted areas. Here, we have developed a clinically relevant ovine model of non-transmural infarcts induced by multiple suture ligations. Intramyocardial injections of the degradable ELRs-hydrogel led to complete functional recovery of ejection fraction 21 days after the intervention. We observed less fibrosis and more angiogenesis in the ELRs-hydrogel-treated ischemic core region compared to the untreated animals, as validated by the expression, proteomic, glycomic, and histological analyses. These findings were accompanied by enhanced preservation of GATA4+ cardiomyocytes in the border zone of the infarct. We propose that our customized ECM favors cardiomyocyte preservation in the border zone by modulating the ischemic core and a marked functional recovery. The functional benefits obtained by the timely injection of the ELRs-hydrogel in a clinically relevant MI model support the potential utility of this treatment for further clinical translation.


Asunto(s)
Hidrogeles , Infarto del Miocardio , Animales , Elastina , Infarto del Miocardio/tratamiento farmacológico , Miocardio , Proteómica , Ovinos , Remodelación Ventricular
8.
Nat Commun ; 12(1): 1072, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33594057

RESUMEN

In addition to nucleosomes, chromatin contains non-histone chromatin-associated proteins, of which the high-mobility group proteins are the most abundant. Chromatin-mediated regulation of transcription involves DNA methylation and histone modifications. However, the order of events and the precise function of high-mobility group proteins during transcription initiation remain unclear. Here we show that high-mobility group AT-hook 2 protein (HMGA2) induces DNA nicks at the transcription start site, which are required by the histone chaperone FACT complex to incorporate nucleosomes containing the histone variant H2A.X. Further, phosphorylation of H2A.X at S139 (γ-H2AX) is required for repair-mediated DNA demethylation and transcription activation. The relevance of these findings is demonstrated within the context of TGFB1 signaling and idiopathic pulmonary fibrosis, suggesting therapies against this lethal disease. Our data support the concept that chromatin opening during transcriptional initiation involves intermediates with DNA breaks that subsequently require DNA repair mechanisms to ensure genome integrity.


Asunto(s)
Desmetilación del ADN , Nucleosomas/metabolismo , Iniciación de la Transcripción Genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cromatina/química , Cromatina/metabolismo , Células HEK293 , Proteína HMGA2/metabolismo , Histonas/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/patología , Ratones , Fosforilación , Fosfoserina/metabolismo , ARN Polimerasa II/metabolismo , Sitio de Iniciación de la Transcripción , Activación Transcripcional/genética , Factor de Crecimiento Transformador beta1/metabolismo
9.
Biomaterials ; 269: 120641, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33493768

RESUMEN

Critical limb ischemia (CLI) is characterized by the impairment of microcirculation, necrosis and inflammation of the muscular tissue. Although the role of glycans in mediating inflammation has been reported, changes in the glycosylation following muscle ischemia remains poorly understood. Here, a murine CLI model was used to show the increase of high mannose, α-(2, 6)-sialic acid and the decrease of hybrid and bisected N-glycans as glycosylation associated with the ischemic environment. Using this model, the efficacy of an elastin-like recombinamers (ELR) hydrogel was assessed. The hydrogel modulates key angiogenic signaling pathways, resulting in capillary formation, and ECM remodeling. Arterioles formation, reduction of fibrosis and anti-inflammatory macrophage polarization wa also induced by the hydrogel administration. Modulation of glycosylation was observed, suggesting, in particular, a role for mannosylation and sialylation in the mediation of tissue repair. Our study elucidates the angiogenic potential of the ELR hydrogel for CLI applications and identifies glycosylation alterations as potential new therapeutic targets.


Asunto(s)
Elastina , Hidrogeles , Isquemia/terapia , Neovascularización Fisiológica , Animales , Glicosilación , Inflamación , Isquemia/patología , Ratones
10.
Arthritis Res Ther ; 22(1): 283, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287871

RESUMEN

BACKGROUND: Heparan sulfate (HS) proteoglycans (PG) may be found at the chondrocyte surface and in the pericellular cartilage matrix, and are involved in cell-cell and cell-matrix interactions. An important function of HS chains is to regulate cell fate through specific interactions with heparin-binding proteins (HBP) modulated by their complex sulfation pattern. Osteoarthritis (OA) is a joint disorder characterized by the degradation of articular cartilaginous extracellular matrix. The aim of this study was to investigate HS structure and functions in osteoarthritic cartilages compared to normal cartilages (controls). METHODS: Glycosaminoglycans (GAG) were extracted from human macroscopically normal cartilages (controls, n = 7) and (OA cartilages n = 11). HS were isolated and quantified using the DMMB quantification method. Their structure and functions were then compared using respectively a HPLC analysis and HBP binding tests and their phenotypic effects on murine chondrocytes were studied by RQ-PCR. Statistical analyzes were performed using a one-way ANOVA followed by a Dunnett's test or a t test for pairwise comparisons. RESULTS: In OA, HS were characterized by increased sulfation levels compared to controls. Moreover, the capacity of these HS to bind HBP involved in the OA pathophysiological process such as FGF2 and VEGF was reduced. Chondroitin sulfates and keratan sulfates regulated these binding properties. Finally, HS from OA cartilages induced the mRNA levels of catabolic markers such as MMP3, MMP13, and TS4 and inhibited the mRNA levels of anabolic markers such as COL2, ACAN, SOX9, and VEGF in murine articular chondrocytes. CONCLUSION: The sulfation of HS chains was increased in OA cartilages with changes in HBP binding properties and biological effects on chondrocyte phenotypes. Thus, modified HS present in altered cartilages could be a novel therapeutic target in OA.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Condrocitos , Glicosaminoglicanos , Heparitina Sulfato , Humanos , Ratones
11.
Sci Rep ; 10(1): 19114, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154448

RESUMEN

Heparan sulfate (HS) chains, covalently linked to heparan sulfate proteoglycans (HSPG), promote synaptic development and functions by connecting various synaptic adhesion proteins (AP). HS binding to AP could vary according to modifications of HS chains by different sulfotransferases. 3-O-sulfotransferases (Hs3sts) produce rare 3-O-sulfated HSs (3S-HSs), of poorly known functions in the nervous system. Here, we showed that a peptide known to block herpes simplex virus by interfering with 3S-HSs in vitro and in vivo (i.e. G2 peptide), specifically inhibited neural activity, reduced evoked glutamate release, and impaired synaptic assembly in hippocampal cell cultures. A role for 3S-HSs in promoting synaptic assembly and neural activity is consistent with the synaptic interactome of G2 peptide, and with the detection of Hs3sts and their products in synapses of cultured neurons and in synaptosomes prepared from developing brains. Our study suggests that 3S-HSs acting as receptors for herpesviruses might be important regulators of neuronal and synaptic development in vertebrates.


Asunto(s)
Proteoglicanos de Heparán Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Sulfotransferasas/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Ratones , Neurogénesis/fisiología , Neuronas/metabolismo
12.
Front Cell Neurosci ; 14: 14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32116560

RESUMEN

Human brain organoids (mini-brains) consist of self-organized three-dimensional (3D) neural tissue which can be derived from reprogrammed adult cells and maintained for months in culture. These 3D structures manifest substantial potential for the modeling of neurodegenerative diseases and pave the way for personalized medicine. However, as these 3D brain models can express the whole human genetic complexity, it is critical to have access to isogenic mini-brains that only differ in specific and controlled genetic variables. Genetic engineering based on retroviral vectors is incompatible with the long-term modeling needed here and implies a risk of random integration while methods using CRISPR-Cas9 are still too complex to adapt to stem cells. We demonstrate in this study that our strategy which relies on an episomal plasmid vector derived from the Epstein-Barr virus (EBV) offers a simple and robust approach, avoiding the remaining caveats of mini-brain models. For this proof-of-concept, we used a normal tau protein with a fluorescent tag and a mutant genetic form (P301S) leading to Fronto-Temporal Dementia. Isogenic cell lines were obtained which were stable for more than 30 passages expressing either form. We show that the presence of the plasmid in the cells does not interfere with the mini-brain differentiation protocol and obtain the development of a pathologically relevant phenotype in cerebral organoids, with pathological hyperphosphorylation of the tau protein. Such a simple and versatile genetic strategy opens up the full potential of human organoids to contribute to disease modeling, personalized medicine and testing of therapeutics.

13.
Biochim Biophys Acta Gene Regul Mech ; 1863(6): 194491, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32006715

RESUMEN

The molecular characteristics of aging that lead to increased disease susceptibility remain poorly understood. Here we present a transcriptomic profile of the human brain associated with age and aging, derived from a systematic integrative analysis of four independent cohorts of genome-wide expression data from 2202 brain samples (cortex, hippocampus and cerebellum) of individuals of different ages (from young infants, 5-10 years old, to elderly people, up to 100 years old) categorized in age stages by decades. The study provides a signature of 1148 genes detected in cortex, 874 genes in hippocampus and 657 genes in cerebellum, that present significant differential expression changes with age according to a robust gamma rank correlation profiling. The signatures show a significant large overlap of 258 genes between cortex and hippocampus, and 63 common genes between the three brain regions. Focusing on cortex, functional enrichment analysis and cell-type analysis provided biological insight about the aging signature. Response to stress and immune response were up-regulated functions. Synapse, neurotransmission and calcium signaling were down-regulated functions. Cell analysis, derived from single-cell data, disclosed an increase of neuronal activity in the young stages of life and a decline of such activity in the old stages. A regulatory analysis identified the transcription factors (TF) associated with the signature of 258 genes, common to cortex and hippocampus; revealing the role of MEF2(A,D), PDX1, FOSL(1,2) and RFX(5,1) as candidate regulators of the signature. Finally, a deep-learning neural network algorithm was used to build a biological age predictor based on the aging signature. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.


Asunto(s)
Envejecimiento/genética , Encéfalo/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Adolescente , Anciano , Anciano de 80 o más Años , Envejecimiento/inmunología , Envejecimiento/metabolismo , Astrocitos/metabolismo , Sitios de Unión , Corteza Cerebral/metabolismo , Niño , Preescolar , Aprendizaje Profundo , Hipocampo/metabolismo , Humanos , Lactante , Microglía/metabolismo , Persona de Mediana Edad , Neuronas/metabolismo , Proteoglicanos/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma , Adulto Joven
14.
Cells ; 8(8)2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349736

RESUMEN

: Aggregated forms of the synaptic protein α-synuclein (αS) have been proposed to operate as a molecular trigger for microglial inflammatory processes and neurodegeneration in Parkinson´s disease. Here, we used brain microglial cell cultures activated by fibrillary forms of recombinant human αS to assess the anti-inflammatory and neuroprotective activities of the antibiotic rifampicin (Rif) and its autoxidation product rifampicin quinone (RifQ). Pretreatments with Rif and RifQ reduced the secretion of prototypical inflammatory cytokines (TNF-, IL-6) and the burst of oxidative stress in microglial cells activated with αS fibrillary aggregates. Note, however, that RifQ was constantly more efficacious than its parent compound in reducing microglial activation. We also established that the suppressive effects of Rif and RifQ on cytokine release was probably due to inhibition of both PI3K- and non-PI3K-dependent signaling events. The control of oxidative stress appeared, however, essentially dependent on PI3K inhibition. Of interest, we also showed that RifQ was more efficient than Rif in protecting neuronal cells from toxic factors secreted by microglia activated by αS fibrils. Overall, data with RifQ are promising enough to justify further studies to confirm the potential of this compound as an anti-parkinsionian drug.


Asunto(s)
Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Rifampin/análogos & derivados , Rifampin/farmacología , alfa-Sinucleína/metabolismo , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Modelos Biológicos , Estructura Molecular , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 2/metabolismo
15.
Nat Commun ; 10(1): 2229, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31110176

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and highly lethal lung disease with unknown etiology and poor prognosis. IPF patients die within 2 years after diagnosis mostly due to respiratory failure. Current treatments against IPF aim to ameliorate patient symptoms and to delay disease progression. Unfortunately, therapies targeting the causes of or reverting IPF have not yet been developed. Here we show that reduced levels of miRNA lethal 7d (MIRLET7D) in IPF compromise epigenetic gene silencing mediated by the ribonucleoprotein complex MiCEE. In addition, we find that hyperactive EP300 reduces nuclear HDAC activity and interferes with MiCEE function in IPF. Remarkably, EP300 inhibition reduces fibrotic hallmarks of in vitro (patient-derived primary fibroblast), in vivo (bleomycin mouse model), and ex vivo (precision-cut lung slices, PCLS) IPF models. Our work provides the molecular basis for therapies against IPF using EP300 inhibition.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Histona Desacetilasa 1/metabolismo , Fibrosis Pulmonar Idiopática/patología , MicroARNs/metabolismo , Ribonucleoproteínas/metabolismo , Animales , Bleomicina/toxicidad , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Proteína p300 Asociada a E1A/antagonistas & inhibidores , Fibroblastos , Silenciador del Gen , Histona Desacetilasa 2/metabolismo , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/genética , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Ratones , Cultivo Primario de Células , Ribonucleoproteínas/genética
16.
PLoS One ; 14(1): e0209573, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30608949

RESUMEN

Glycosaminoglycans (GAGs), including heparan sulfates and chondroitin sulfates, are major components of the extracellular matrix. Upon interacting with heparin binding growth factors (HBGF), GAGs participate to the maintaintenance of tissue homeostasis and contribute to self-healing. Although several processes regulated by HBGF are altered in Alzheimer's disease, it is unknown whether the brain GAG capacities to bind and regulate the function of HBGF or of other heparin binding proteins, as tau, are modified in this disease. Here, we show that total sulfated GAGs from hippocampus of Alzheimer's disease have altered capacities to bind and potentiate the activities of growth factors including FGF-2, VEGF, and BDNF while their capacity to bind to tau is remarkable increased. Alterations of GAG structures and capacities to interact with and regulate the activity of heparin binding proteins might contribute to impaired tissue homeostasis in the Alzheimer's disease brain.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Glicosaminoglicanos/metabolismo , Proteínas tau/fisiología , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Brasil , Sulfatos de Condroitina/metabolismo , Matriz Extracelular/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Heparina/metabolismo , Heparitina Sulfato/metabolismo , Hipocampo/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Unión Proteica , Lóbulo Temporal/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
17.
Nat Commun ; 9(1): 3087, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082715

RESUMEN

Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7-/- mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7-/- mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development.


Asunto(s)
Amelogénesis Imperfecta/genética , Enfermedades del Desarrollo Óseo/genética , Mutación , Transportadores de Anión Orgánico Sodio-Dependiente/genética , Simportadores/genética , Animales , Peso Corporal , Células COS , Niño , Preescolar , Chlorocebus aethiops , Modelos Animales de Enfermedad , Electroforesis , Exoma , Glicoproteínas/química , Células HEK293 , Humanos , Lactante , Ratones , Ratones Noqueados , Osteocondrodisplasias/genética
18.
Biochem J ; 475(15): 2417-2433, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-29934491

RESUMEN

Sulfation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulfate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulfotransferases, including HS 2-O-sulfotransferase (HS2ST), which transfers sulfate from the cofactor PAPS (3'-phosphoadenosine 5'-phosphosulfate) to the 2-O position of α-l-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulfation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors. In the present paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalysed oligosaccharide sulfation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set, to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell-permeable compounds in vitro, including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with the present study, we demonstrated that tyrosyl protein sulfotranferases are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small-molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulfation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST.


Asunto(s)
Proteínas Aviares/química , Heparitina Sulfato/química , Oligosacáridos/química , Inhibidores de Proteínas Quinasas/química , Sulfotransferasas/química , Quinasas raf/antagonistas & inhibidores , Animales , Proteínas Aviares/genética , Pollos , Heparitina Sulfato/farmacología , Humanos , Oligosacáridos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Sulfotransferasas/genética , Porcinos , Quinasas raf/química
19.
FEBS Lett ; 592(23): 3806-3818, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29729013

RESUMEN

Neurodegenerative disorders, such as Alzheimer's, Parkinson's, and prion diseases, are directly linked to the formation and accumulation of protein aggregates in the brain. These aggregates, principally made of proteins or peptides that clamp together after acquisition of ß-folded structures, also contain heparan sulfates. Several lines of evidence suggest that heparan sulfates centrally participate in the protein aggregation process. In vitro, they trigger misfolding, oligomerization, and fibrillation of amyloidogenic proteins, such as Aß, tau, α-synuclein, prion protein, etc. They participate in the stabilization of protein aggregates, protect them from proteolysis, and act as cell-surface receptors for the cellular uptake of proteopathic seeds during their spreading. This review focuses attention on the importance of heparan sulfates in protein aggregation in brain disorders including Alzheimer's, Parkinson's, and prion diseases. The presence of these sulfated polysaccharides in protein inclusions in vivo and their capacity to trigger protein aggregation in vitro strongly suggest that they might play critical roles in the neurodegenerative process. Further advances in glyco-neurobiology will improve our understanding of the molecular and cellular mechanisms leading to protein aggregation and neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Heparitina Sulfato/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedades por Prión/metabolismo , Agregado de Proteínas , Amiloide/química , Amiloide/metabolismo , Heparitina Sulfato/química , Humanos , Modelos Químicos , Proteínas Priónicas/química , Proteínas Priónicas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo
20.
Biochim Biophys Acta Gen Subj ; 1862(7): 1644-1655, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29660372

RESUMEN

BACKGROUND: Heparan sulfate (HS) 3-O-sulfation can be catalysed by seven 3-O-sulfotransferases (HS3STs) in humans, still it is the rarest modification in HS and its biological function is yet misunderstood. HS3ST2 and HS3ST3B exhibit the same activity in vitro. They are however differently expressed in macrophages depending on cell environment, which suggests that they may be involved in distinct cellular processes. Here, we hypothesized that both isozymes might also display distinct subcellular localizations. METHODS: The subcellular distribution of HS3ST2 and HS3ST3B was analysed by using overexpression systems in HeLa cells. The localization of endogenous HS3ST2 was confirmed by immunostaining in primary macrophages. RESULTS: We found that HS3ST3B was only localized in the Golgi apparatus and no difference between full-length enzyme and truncated construct depleted of its catalytic domain was observed. In contrast, HS3ST2 was clearly visualized at the plasma membrane. Its truncated form remained in the Golgi apparatus, meaning that the catalytic domain might support correct addressing of HS3ST2 to cell surface. Moreover, we found a partial co-localization of HS3ST2 with syndecan-2 in HeLa cells and primary macrophages. Silencing the expression of this proteoglycan altered the localization of HS3ST2, which suggests that syndecan-2 is required to address the isozyme outside of the Golgi apparatus. CONCLUSIONS: We demonstrated that HS3ST3B is a Golgi-resident isozyme, while HS3ST2 is addressed to the plasma membrane with syndecan-2. GENERAL SIGNIFICANCE: The membrane localization of HS3ST2 suggests that this enzyme may participate in discrete processes that occur at the cell surface.


Asunto(s)
Amidohidrolasas/análisis , Membrana Celular/enzimología , Macrófagos/enzimología , Proteínas de la Membrana/análisis , Sulfotransferasas/análisis , Amidohidrolasas/genética , Células Cultivadas , Aparato de Golgi/enzimología , Células HEK293 , Células HeLa , Humanos , Isoenzimas/análisis , Proteínas de la Membrana/genética , Microscopía Fluorescente , Monocitos/citología , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Fracciones Subcelulares/enzimología , Sulfotransferasas/genética , Sindecano-2/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...