Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 44(2): 216-234, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37646119

RESUMEN

Serotonergic psychedelics, such as lysergic acid diethylamide (LSD), psilocybin, dimethyltryptamine (DMT), and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), are currently being investigated for the treatment of psychiatric disorders such as depression and anxiety. Clinical trials with psilocybin and LSD have shown improvement in emotional and psychological scores. Although these drugs are reported to be safe in a controlled environment (such as clinical trials), exposure to low doses of these drugs can result in psychedelic effects, and therefore, occupational safety is an important consideration to prevent adverse effects in the workplace from low daily exposure. This article will discuss the factors involved in the derivation of occupational exposure limits (OELs) and risk assessment of these psychedelic drugs. To support the OEL derivations of psychedelic drugs, information regarding their mechanism of action, adverse effect profiles, pharmacokinetics, clinical effects, and nonclinical toxicity were considered. Additionally, psilocybin and LSD, which are the most extensively researched psychedelic substances, are employed as illustrative examples in case studies. The OELs derived for psilocybin and for LSD are 0.05 and 0.002 µg/m3 , respectively, which indicates that these are highly hazardous compounds, and it is important to take into account suitable safety measures and risk-management strategies in order to minimize workplace exposure.


Asunto(s)
Alucinógenos , Humanos , Alucinógenos/toxicidad , Alucinógenos/uso terapéutico , Psilocibina/toxicidad , Psilocibina/uso terapéutico , Dietilamida del Ácido Lisérgico/toxicidad , Dietilamida del Ácido Lisérgico/uso terapéutico , N,N-Dimetiltriptamina , Medición de Riesgo
2.
Microbiol Resour Announc ; 12(10): e0062623, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37772837

RESUMEN

The bacterium Staphylococcus hyicus causes porcine exudative epidermitis in piglets, which represents both health and welfare concerns. Few genome sequences of this pathogen are published. We provide four additional ones to help future genomic analysis of S. hyicus. These are genomes of strains isolated from Canadian swine.

3.
Virus Res ; 334: 199165, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37385348

RESUMEN

Aeromonas salmonicida subsp. salmonicida is a Gam-negative bacterium responsible for furunculosis in fish. Because this aquatic bacterial pathogen has a rich reservoir of antibiotic-resistant genes, it is essential to investigate antibacterial alternatives, including the use of phages. Yet, we have previously demonstrated the inefficiency of a phage cocktail designed against A. salmonicida subsp. salmonicida strains due to a phage resistance phenotype associated to a prophage, namely Prophage 3. To bypass this resistance, one of the solutions is to isolate novel phages capable of infecting Prophage 3-bearing strains. Here we report on the isolation and characterization of the new virulent phage vB_AsaP_MQM1 (or MQM1), which is highly specific to A. salmonicida subsp. salmonicida strains. Phage MQM1 inhibited the growth of 01-B516, a strain carrying Prophage 3, including when combined to the previous phage cocktail. MQM1 infected 26 out of the 30 (87%) Prophage 3-bearing strains tested. Its linear dsDNA genome contains 63,343 bp, with a GC content of 50.2%. MQM1 genome can encode 88 proteins and 8 tRNAs, while no integrase or transposase-encoding genes were found. This podophage has an icosahedral capsid and a non-contractile short tail. We suggest that MQM1 may be a good addition to future phage cocktails against furunculosis to resolve the Prophage 3-resistance issue.


Asunto(s)
Aeromonas salmonicida , Bacteriófagos , Forunculosis , Animales , Bacteriófagos/genética , Forunculosis/microbiología , Profagos/genética , Aeromonas salmonicida/genética , Peces
4.
Genome ; 66(5): 108-115, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36780641

RESUMEN

All the 36 known species to date of the genus Aeromonas are mesophilic except the species Aeromonas salmonicida, which includes both psychrophilic and mesophilic subspecies. For 20 years, more and more mesophilic A. salmonicida strains have been discovered. Only A. salmonicida subsp. pectinolytica has officially been classified as a mesophilic subspecies. Most mesophiles have been isolated in hot countries. We present, for the first time, the characterization of two new mesophilic isolates from Quebec (Canada). Phenotypic and genomic characterizations were carried out on these strains, isolated from dead fish from a fish farm. Isolates 19-K304 and 19-K308 are clearly mesophiles, virulent to the amoeba Dictyostelium discoideum, a surrogate host, and close to strain Y577, isolated in India. To our knowledge, this is the first time that mesophilic strains isolated from different countries are so similar. The major difference between the isolates is the presence of plasmid pY47-3, a cryptic plasmid that sometimes presents in mesophilic strains. More importantly, our extensive phylogenetic analysis reveals two well-defined clades of mesophilic strains with psychrophiles associated with one of these clades. This helps to have a better understanding of the evolution of this species and the apparition of psychrophilic subspecies.


Asunto(s)
Aeromonas salmonicida , Dictyostelium , Animales , Aeromonas salmonicida/genética , Filogenia , Canadá , Análisis por Conglomerados
5.
Antibiotics (Basel) ; 12(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36830168

RESUMEN

Plasmids that carry antibiotic resistance genes occur frequently in Aeromonas salmonicida subsp. salmonicida, an aquatic pathogen with severe consequences in salmonid farming. Here, we describe a 67 kb plasmid found in the A. salmonicida subsp. salmonicida Strain SHY15-2939 from Quebec, Canada. This new plasmid, named pAsa-2939 and identified by high throughput sequencing, displays features never found before in this bacterial species. It contains a transposon related to the Tn21 family, but with an unusual organization. This transposon bears a catB3 gene (chloramphenicol resistance) that has not been detected yet in A. salmonicida subsp. salmonicida. The plasmid is transferable by conjugation into Aeromonas hydrophila, but not into Escherichia coli. Based on PCR analysis and genomic sequencing (Illumina and PacBio), we determined that the transposon is unstable in A. salmonicida subsp. salmonicida Strain SHY15-2939, but it is stable in A. hydrophila trans-conjugants, which explains the chloramphenicol resistance variability observed in SHY15-2939. These results suggest that this bacterium is likely not the most appropriate host for this plasmid. The presence of pAsa-2939 in A. salmonicida subsp. salmonicida also strengthens the reservoir role of this bacterium for antibiotic resistance genes, even those that resist antibiotics not used in aquaculture in Québec, such as chloramphenicol.

6.
Arch Virol ; 168(2): 72, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670249

RESUMEN

Aeromonas salmonicida subsp. salmonicida causes furunculosis, a major infection that affects fish farms worldwide. We isolated phage vB_AsaM_LPM4 (LPM4) from a diseased fish. Based on its DNA sequence, LPM4 is identical to the uncharacterized Prophage 3, a prophage present mostly in North American A. salmonicida subsp. salmonicida isolates that bear the genomic island AsaGEI2a. Prophage 3 and AsaGEI2a are inserted side by side in the bacterial chromosome. The LPM4/Prophage 3 sequence is similar to that of other prophages found in various members of the genus Aeromonas. LPM4 specifically infects A. salmonicida subsp. salmonicida strains that do not already bear Prophage 3. The presence of an A-layer on the surface of the bacteria is not necessary for the adsorption of phage LPM4 but seems to facilitate its infection process. We also successfully produced lysogenic strains that bear Prophage 3 using sensitive strains with different genetic backgrounds, suggesting that there is no interdependency between LPM4 and AsaGEIs. PCR analysis of the excision dynamics of Prophage 3 and AsaGEIs revealed that these genetic elements can spontaneously excise themselves from the bacterial chromosome independently of one another. Through the isolation and characterization of LPM4, this study reveals new facets of Prophage 3 and AsaGEIs.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Enfermedades de los Peces , Forunculosis , Animales , Profagos/genética , Aeromonas salmonicida/genética , Forunculosis/microbiología , Peces , Enfermedades de los Peces/microbiología
7.
Antibiotics (Basel) ; 11(8)2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-36009916

RESUMEN

Aeromonas salmonicida subsp. salmonicida is a pathogenic bacterium responsible for furunculosis in salmonids. Following an outbreak of furunculosis, the infection can be treated with antibiotics, but it is common to observe ineffective treatment due to antibiotic resistance. This bacterium has a wide variety of plasmids responsible for this resistance. Among them, pRAS3 carries a tetracycline resistance gene. Several variants of this plasmid have been discovered over the years (pRAS3-3432 and pRAS3.1 to 3.4). During the present study, two new variants of the plasmid pRAS3 were identified (pRAS3.5 and pRAS3-3759) in strains of A. salmonicida subsp. salmonicida. Plasmid pRAS3-3759, which has been found in many strains from the same region over the past three years, has an additional genetic element identical to one found in pRAS3-3432. This genetic element was also found in Chlamydia suis, a swine pathogen. In this study, we analyzed the bacteria's resistance to tetracycline, the number of copies of the plasmids, and the growth of the strains that carry five of the pRAS3 variants (pRAS3.3 to 3.5, pRAS3-3432, and pRAS3-3759). The results show no particular trend despite the differences between the plasmids, except for the resistance to tetracycline when analyzed in an isogenic background. Blast analysis also revealed the presence of pRAS3 plasmids in other bacterial species, which suggests that this plasmid family has widely spread. This study once again highlights the ability of A. salmonicida subsp. salmonicida to adapt to furunculosis antibiotic treatments, and the still-growing family of pRAS3 plasmids.

8.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35884228

RESUMEN

Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.

9.
FEMS Microbiol Lett ; 369(1)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35883218

RESUMEN

Worldwide, Aeromonas salmonicida is a major bacterial pathogen of fish in both marine and freshwater environments. Despite psychrophilic growth being common for this species, the number of characterized mesophilic strains is increasing. Thus, this species may serve as a model for the study of intraspecies lifestyle diversity. Although bacteria are preyed upon by protozoan predators, their interaction inside or outside the phagocytic pathway of the predator can provide several advantages to the bacteria. To correlate intraspecies diversity with predation outcome, we studied the fate of psychrophilic and mesophilic strains of A. salmonicida cocultured with the ciliate Tetrahymena pyriformis. A total of three types of outcome were observed: digestion, resistance to phagocytosis, and pathogenicity. The psychrophilic strains are fully digested by the ciliate. In contrast, the mesophilic A. salmonicida subsp. pectinolytica strain is pathogenic to the ciliate. All the other mesophilic strains display mechanisms to resist phagocytosis and/or digestion, which allow them to survive ciliate predation. In some cases, passage through the phagocytic pathway resulted in a few mesophilic A. salmonicida being packaged inside fecal pellets. This study sheds light on the great phenotypic diversity observed in the complex range of mechanisms used by A. salmonicida to confront a predator.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Enfermedades de los Peces , Tetrahymena pyriformis , Aeromonas salmonicida/genética , Animales , Enfermedades de los Peces/microbiología , Peces , Virulencia
10.
J Fish Dis ; 45(1): 177-184, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34748248

RESUMEN

Aeromonas salmonicida subspecies salmonicida, a fish pathogen, expresses various virulence factors such as an A-layer, lipases and proteases during the infection process. Not all strains of this bacterium express the same virulence factors. It is important to be able to evaluate which factors are present when characterizing strains. The A-layer and secreted lipases and proteases are usually detected by agar-based tests that require long incubation (24 h and more) and may provide ambiguous results. In the present study, protocols have been optimized to determine the presence of these virulence factors using liquid tests. For A-layer detection, the optimized method stains the positive bacteria with Coomassie Brilliant Blue. The lipases are detected by a colorimetric biochemical reaction triggered by the degradation of p-nitrophenyl dodecanoate into a yellow product detectable by spectrophotometry, if the result is positive. Both of these tests show results in less than an hour. Finally, the protease activity is measured by clarification of a medium containing milk during an overnight bacterial growth. These new protocols provide opportunities for quicker characterization of A. salmonicida subsp. salmonicida strains and, particularly, provide more precise results.


Asunto(s)
Aeromonas salmonicida , Aeromonas , Enfermedades de los Peces , Animales , Virulencia , Factores de Virulencia/genética
11.
Viruses ; 13(11)2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34835047

RESUMEN

Aquaculture is a rapidly growing food production sector. Fish farmers are experiencing increasing problems with antibiotic resistance when fighting against pathogenic bacteria such as Aeromonas salmonicida subsp. salmonicida, the causative agent of furunculosis. Phage therapy may provide an alternative, but effective use must be determined. Here, we studied the inhibition of A. salmonicida subsp. salmonicida strains by five phages (HER98 [44RR2.8t.2], HER110 [65.2], SW69-9, L9-6 and Riv-10) used individually or as combinations of two to five phages. A particular combination of four phages (HER98 [44RR2.8t.2], SW69-9, Riv-10, and HER110 [65.2]) was found to be the most effective when used at an initial multiplicity of infection (MOI) of 1 against the A. salmonicida subsp. salmonicida strain 01-B526. The same phage cocktail is effective against other strains except those bearing a prophage (named Prophage 3), which is present in 2/3 of the strains from the province of Quebec. To confirm the impact of this prophage, we tested the effectiveness of the same cocktail on strains that were either cured or lysogenized with Prophage 3. While the parental strains were sensitive to the phage cocktail, the lysogenized ones were much less sensitive. These data indicate that the prophage content of A. salmonicida subsp. salmonicida can affect the efficacy of a cocktail of virulent phages for phage therapy purposes.


Asunto(s)
Aeromonas/virología , Bacteriófagos/fisiología , Profagos/fisiología , Aeromonas/genética , Aeromonas/crecimiento & desarrollo , Animales , Acuicultura , Bacteriófagos/clasificación , Forunculosis/microbiología , Forunculosis/terapia , Islas Genómicas/genética , Especificidad del Huésped , Lisogenia , Terapia de Fagos/veterinaria
12.
Microbiol Resour Announc ; 10(18)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958402

RESUMEN

The genome sequencing of Aeromonas salmonicida subspecies salmonicida strain 2004-072 revealed a plasmid bearing a region carrying antibiotic resistance genes very similar to the one found in the plasmid pRAS1, an IncU family plasmid. This new plasmid was named pRAS1b.

13.
FEMS Microbiol Lett ; 368(4)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33605980

RESUMEN

Genomic islands (Aeromonas salmonicida genomic islands, AsaGEIs) are found worldwide in many isolates of Aeromonas salmonicida subsp. salmonicida, a fish pathogen. To date, five variants of AsaGEI (1a, 1b, 2a, 2b and 2c) have been described. Here, we investigate a sixth AsaGEI, which was identified in France between 2016 and 2019 in 20 A. salmonicida subsp. salmonicida isolates recovered from sick salmon all at the same location. This new AsaGEI shares the same insertion site in the chromosome as the other AsaGEI2s as they all have a homologous integrase gene. This new AsaGEI was thus named AsaGEI2d, and has five unique genes compared to the other AsaGEIs. The isolates carrying AsaGEI2d also bear the plasmid pAsa7, which was initially found in an isolate from Switzerland. This plasmid provides resistance to chloramphenicol thanks to a cat gene. This study reveals more about the diversity of the AsaGEIs.


Asunto(s)
Aeromonas/genética , Islas Genómicas , Plásmidos , Aeromonas/clasificación , Aeromonas/efectos de los fármacos , Aeromonas/aislamiento & purificación , Animales , Antibacterianos/farmacología , Resistencia al Cloranfenicol/genética , Enfermedades de los Peces/microbiología , Francia , Genoma Bacteriano/genética , Islas Genómicas/genética , Integrasas/genética , Pruebas de Sensibilidad Microbiana , Sistemas de Lectura Abierta , Filogenia , Plásmidos/genética , Salmón
14.
Arch Virol ; 166(2): 521-533, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33394168

RESUMEN

Aeromonas salmonicida strains cause problematic bacterial infections in the aquaculture industry worldwide. The genus Aeromonas includes both mesophilic and psychrophilic species. Bacteriophages that infect Aeromonas spp. strains are usually specific for mesophilic or psychrophilic species; only a few bacteriophages can infect both types of strains. In this study, we characterized the podophage T7-Ah, which was initially found to infect the Aeromonas salmonicida HER1209 strain. The burst size of T7-Ah against its original host is 72 new virions per infected cell, and its burst time is 30 minutes. It has been found that this phage can lyse both mesophilic and psychrophilic A. salmonicida strains, as well as one strain of Escherichia coli. Its genome comprises 40,153 bp of DNA and does not contain any recognizable toxin or antibiotic resistance genes. The adsorption rate of the phage on highly sensitive bacterial strains was variable and could not be related to the presence or absence of a functional A-layer on the surface of the bacterial strains. The lipopolysaccharide migration patterns of both resistant and sensitive bacterial strains were also studied and compared to investigate the nature of the potential receptor of this phage on the bacterial surface. This study sheds light on the surprising diversity of lifestyles of the bacterial strains sensitive to phage T7-Ah and opens the door to the potential use of this phage against A. salmonicida infections in aquaculture.


Asunto(s)
Aeromonas salmonicida/virología , Bacteriófago T7/genética , Bacteriófago T7/patogenicidad , Acuicultura , Genoma Viral/genética , Especificidad del Huésped/genética
15.
Microorganisms ; 8(10)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036410

RESUMEN

Protozoa are natural predators of bacteria, but some bacteria can evade digestion once phagocytosed. Some of these resistant bacteria can be packaged in the fecal pellets produced by protozoa, protecting them from physical stresses and biocides. Depending on the bacteria and protozoa involved in the packaging process, pellets can have different morphologies. In the present descriptive study, we evaluated the packaging process with 20 bacteria that have never been tested before for packaging by ciliates. These bacteria have various characteristics (shape, size, Gram staining). All of them appear to be included in pellets produced by the ciliates Tetrahymena pyriformis and/or T. thermophila in at least one condition tested. We then focused on the packaging morphology of four of these bacteria. Our results demonstrated that, as shown previously for Mycobacterium smegmatis, the packaging of Microbacterium oxydans, Micrococcus luteus, and Cupriavidus sp. was formed of a single layer of material. The packaging of Cellulosimicrobiumfunkei was made of indistinguishable material. A different pellet morphology was obtained for each of the four bacterial strains studied. The ingestion of small bacteria resulted in rounder, denser, and more regular pellets. These results support the idea that bacteria packaging is a relatively widespread phenomenon.

16.
Microorganisms ; 9(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396556

RESUMEN

The type three secretion system (TTSS) locus of Aeromonas salmonicida subsp. salmonicida, located on the plasmid pAsa5, is known to be lost when the bacterium is grown at temperatures of 25 °C. The loss of the locus is due to the recombination of the insertion sequences flanking the TTSS region. However, the mechanism involved in this recombination is still elusive. Here, we analyzed 22 A. salmonicida subsp. salmonicida strains that had already lost their TTSS locus, and we systematically explored another 47 strains for their susceptibility to lose the same locus when grown at 25 °C. It appeared that strains from Europe were more prone to lose their TTSS locus compared to Canadian strains. More specifically, it was not possible to induce TTSS loss in Canadian strains that have AsaGEI2a, a genomic island, and prophage 3, or in Canadian strains without a genomic island. A comparative genomic approach revealed an almost perfect correlation between the presence of a cluster of genes, not yet characterized, and the susceptibility of various groups of strains to lose their locus. This cluster of genes encodes putative proteins with DNA binding capacity and phage proteins. This discovery creates new opportunities in the study of pAsa5 thermosensitivity.

17.
Microbiol Resour Announc ; 8(33)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31416869

RESUMEN

The bacterial species Aeromonas salmonicida officially has five subspecies. A large majority of the currently available sequences come from Aeromonas salmonicida subsp. salmonicida, which causes furunculosis in salmonids. We present the genomic sequences of four Aeromonas salmonicida subsp. achromogenes strains. This will help increase the robustness of genomic analyses for this subspecies.

18.
Sci Total Environ ; 690: 313-320, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31299566

RESUMEN

The Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is an aquatic pathogen which causes furunculosis to salmonids, especially in fish farms. The emergence of strains of this bacterium exhibiting antibiotic resistance is increasing, limiting the effectiveness of antibiotherapy as a treatment against this worldwide disease. In the present study, we discovered an isolate of A. salmonicida subsp. salmonicida that harbors two novel plasmids variants carrying antibiotic resistance genes. The use of long-read sequencing (PacBio) allowed us to fully characterize those variants, named pAsa5-3432 and pRAS3-3432, which both differ from their classic counterpart through their content in mobile genetic elements. The plasmid pAsa5-3432 carries a new multidrug region composed of multiple mobile genetic elements, including a Class 1 integron similar to an integrated element of Salmonella enterica. With this new region, probably acquired through plasmid recombination, pAsa5-3432 is the first reported plasmid of this bacterium that bears both an essential virulence factor (the type three secretion system) and multiple antibiotic resistance genes. As for pRAS3-3432, compared to the classic pRAS3, it carries a new mobile element that has only been identified in Chlamydia suis. Hence, with the identification of those two novel plasmids harboring mobile genetic elements that are normally encountered in other bacterial species, the present study puts emphasis on the important impact of mobile genetic elements in the genomic plasticity of A. salmonicida subsp. salmonicida and suggests that this aquatic bacterium could be an important reservoir of antibiotic resistance genes that can be exchanged with other bacteria, including human and animal pathogens.


Asunto(s)
Aeromonas salmonicida/genética , Farmacorresistencia Microbiana/genética , Animales , Genes Bacterianos , Genoma Bacteriano , Porcinos , Factores de Virulencia/genética
19.
Mol Microbiol ; 112(2): 667-677, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31115938

RESUMEN

Aeromonas salmonicida subsp. salmonicida is a fish pathogen that causes furunculosis. Antibiotherapy used to treat furunculosis in fish has led to resistance. Virulent phages are increasingly seen as alternatives or complementary treatments against furunculosis in aquaculture environments. For phage therapy to be successful, it is essential to study the natural mechanisms of phage resistance in A. salmonicida subsp. salmonicida. Here, we generated bacteriophage-insensitive mutants (BIMs) of A. salmonicida subsp. salmonicida, using a myophage with broad host range and characterized them. Phage plaques were different depending on whether the A-layer surface array protein was expressed or not. The genome analysis of the BIMs helped to identify mutations in genes involved in the biogenesis of lipopolysaccharides (LPS) and on an uncharacterized gene (ASA_1998). The characterization of the LPS profile and gene complementation assays identified LPS as a phage receptor and confirmed the involvement of the uncharacterized protein ASA_1998 in phage infection. In addition, we confirmed that the presence of an A-layer at the bacterial surface could act as protection against phages. This study brings new elements into our understanding of the phage adsorption to A. salmonicida subsp. salmonicida cells.


Asunto(s)
Aeromonas salmonicida/metabolismo , Aeromonas salmonicida/virología , Proteínas Bacterianas/metabolismo , Bacteriófagos/fisiología , Lipopolisacáridos/metabolismo , Acoplamiento Viral , Adsorción , Aeromonas salmonicida/genética , Animales , Proteínas Bacterianas/genética , Bacteriófagos/genética , Enfermedades de los Peces/microbiología , Peces , Forunculosis/microbiología , Mutación
20.
Eur J Cell Biol ; 96(8): 767-773, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29107380

RESUMEN

The amoeba Dictyostelium discoideum produces and secretes multilamellar bodies (MLBs) mainly composed of amoebal membranes upon digestion of bacteria. After their secretion, the fate of these MLBs remains unknown. The aim of this study was to determine if protozoa can internalize and digest secreted D. discoideum MLBs. Our results showed that MLBs were ingested by naive axenic D. discoideum cells (i. e. cells not exposed to bacteria and consequently not producing MLBs). Only a small fraction of the ingested MLBs were found in cells' post-lysosomes compared to undigestible beads suggesting that naive amoebae digest them. D. discoideum MLBs were also ingested by the ciliates Tetrahymena pyriformis and Tetrahymena thermophila. MLBs internalized by the ciliates were compacted into pellets and expelled in the extracellular medium without obvious signs of degradation. The results of this study provide new insights on the biological function of MLBs and, considering that MLBs are also involved in bacteria packaging, suggest additional layers of complexity in microbial interactions.


Asunto(s)
Dictyostelium/fisiología , Bacterias/metabolismo , Dictyostelium/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...