Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 10(10): 1031-1044, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30800216

RESUMEN

Nimotuzumab is a humanized anti-epidermal growth factor receptor I (EGFR) monoclonal antibody. We have developed antibody drug conjugates (ADCs) with nimotuzumab conjugated to PEGylated-maytansine (PEG6-DM1). We generated conjugates with low (nimotuzumab-PEG6-DM1-Low: DAR = 3.5) and high (nimotuzumab-PEG6-DM1-High: DAR = 7.3) drug to antibody ratios (DAR). Quality control was performed using UV spectrophotometry, size exclusion HPLC, bioanalyzer, biolayer interferometry (BLI), and flow cytometry in EGFR-positive DLD-1, MDA-MB-468 (high density EGFR), and HT-29 (very low EGFR density) cells. Control antibody drug conjugates were developed using a human anti-maltose binding protein (MBP) antibody. BLI showed that the binding of nimotuzumab-PEG6-DM1-Low and nimotuzumab-PEG6-DM1-High was slightly but significantly affected by conjugation of the drug (nimotuzumab KD 0.89 ± 0.02 nM < nimotuzumab-PEG6-DM1-Low KD 1.94 ± 0.02 nM < nimotuzumab-PEG6-DM1-High KD 3.75 ± 0.03 nM). In vitro cytotoxicity was determined following incubation of cells with the immunoconjugates and IC50 values were determined. Nimotuzumab-PEG6-DM1-Low and nimotuzumab-PEG6-DM1-High were used to treat EGFR positive KRAS mutant DLD-1 colorectal cancer xenograft. DLD-1 cells were transduced with a red fluorescent protein (iRFP702) to allow the use of near infrared imaging (NIR) for tumor response monitoring. In vitro potency correlated with the number of drugs on antibody, with nimotuzumab-PEG6-DM1-High showing higher activity than nimotuzumab-PEG6-DM1-Low. Three doses (15 mg/kg) of the ADCs prolonged the survival of DLD-1-iRFP-702 tumor bearing mice as monitored by NIR. Nimotuzumab-PEG6-DM1-Low resulted in 4/6 complete cure while nimotuzumab-PEG6-DM1-High resulted in 2/5 complete cure. The novel ADCs were very effective in a colorectal cancer model in vivo.

2.
J Nucl Med ; 60(8): 1103-1110, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30655327

RESUMEN

Epidermal growth factor receptor I (EGFR) is overexpressed in most cancers of epithelial origin. Antibody drug conjugates (ADCs) with PEGylated-maytansine (PEG-DM1) show promise in vitro and in vivo. However, in vivo biodistribution data for ADCs with PEG-DM1 have not been reported. Development of methods to understand the real-time in vivo behavior of these ADCs is needed to move these compounds to the clinic. Methods: Here we have used noninvasive small-animal SPECT/CT imaging and ex vivo biodistribution to understand the in vivo behavior of PEG6-DM1 ADCs. We developed nimotuzumab ADCs conjugated to PEG6-DM1. We generated immunoconjugates with low (nimotuzumab-PEG6-DM1-Low) and high (nimotuzumab-PEG6-DM1-High) drug-to-antibody ratios. The drug-to-antibody of nimotuzumab-PEG6-DM1-Low and nimotuzumab-PEG6-DM1-High was 3.5 and 7.3, respectively. Quality control was performed using ultraviolet spectrophotometry, size-exclusion high-performance liquid chromatography, bioanalyzer, biolayer interferometry, and flow cytometry in EGFR-positive DLD-1 cells. These immunoconjugates were conjugated with DOTA and radiolabeled with 111In. The in vitro binding and internalization rates of 111In-nimotuzumab, 111In-nimotuzumab-PEG6-DM1-Low, and 111In-nimotuzumab-PEG6-DM1-High were characterized. Furthermore, the pharmacokinetics, biodistribution, and imaging characteristics were evaluated in normal and DLD-1 tumor-bearing mice. Results: Flow cytometry and biolayer interferometry showed a trend toward decreasing EGFR affinity with increasing number of PEG6-DM1 on the antibody. Despite the lower overall cellular binding of the PEG6-DM1 radioimmunoconjugates, internalization was higher for PEG6-DM1 ADCs than for the non-PEGylated ADC in the following order: 111In-nimotuzumab-PEG6-DM1-High > 111In-nimotuzumab-PEG6-DM1-Low > 111In-nimotuzumab. Nuclear uptake of 111In-nimotuzumab-PEG6-DM1-High was 4.4-fold higher than 111In-nimotuzumab. Pharmacokinetics and biodistribution showed that 111In-nimotuzumab-PEG6-DM1-High had the slowest blood and whole-body clearance rate. Uptake in DLD-1 tumors of 111In-nimotuzumab was similar to 111In-nimotuzumab-PEG6-DM1-Low but was significantly higher than for 111In-nimotuzumab-PEG6-DM1-High. Tumor-to-background ratios for 111In-nimotuzumab and 111In-nimotuzumab-PEG6-DM1-Low were higher than for 111In-nimotuzumab-PEG6-DM1-High. Conclusion: The results show that conjugation of multiple PEG6-DM1 reduces the affinity for EGFR in vitro. However, the reduced affinity is counteracted by the high internalization rate of constructs with PEG6-DM1 ADCs in vitro. The decreased affinity resulted in low tumor uptake of 111In-nimotuzumab-PEG6-DM1-High, with a slow overall whole-body clearance rate. These data provide insights for evaluating the pharmacokinetics and normal -tissue toxicity and in determining dosing rate of PEGylated ADCs.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Inmunoconjugados , Radioisótopos de Indio , Maitansina/farmacología , Neoplasias/metabolismo , Animales , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Receptores ErbB/metabolismo , Citometría de Flujo , Células HT29 , Humanos , Interferometría , Cinética , Ratones , Ratones Endogámicos BALB C , Trasplante de Neoplasias , Polietilenglicoles/química , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Espectrofotometría Ultravioleta , Distribución Tisular , Trastuzumab/farmacología
3.
Oncotarget ; 9(24): 17117-17132, 2018 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-29682209

RESUMEN

RATIONALE: Epidermal growth factor receptor (EGFR) upregulation is associated with enhanced proliferation and drug resistance in a number of cancers. Nimotuzumab is a humanized monoclonal antibody with high affinity for EGFR. The objective of this study was to determine if 89Zr-DFO-nimotuzumab could be suitable for human use as a PET probe for quantifying EGFR in vivo. METHODS: To evaluate the pharmacokinetics, biodistribution, microPET imaging, radiation dosimetry, and normal tissue toxicity in tumor and non-tumor bearing mice of 89Zr-desferoxamine-nimotuzumab (89Zr-DFO-nimotuzumab) of a product prepared under GMP conditions. Nimotuzumab was conjugated to DFO and radiolabeled with 89Zr. 89Zr-DFO-nimotuzumab was characterized by in vitro gel-electrophoresis, biolayer interferometry (BLI) and flow cytometry. 89Zr-DFO-nimotuzumab was evaluated in vivo by microPET and ex vivo by biodistribution in healthy and EGFR-positive tumor bearing mice. RESULTS: Flow cytometry with A431 cells showed no significant difference in the dissociation constant of nimotuzumab (13 ± 2 nM) compared with DFO-nimotuzumab (17 ± 4 nM). PET imaging in mice xenografts showed persistently high tumor uptake with the highest uptake obtained in DLD-1 xenograft (18.3 %IA/cc) at 168 hp.i. The projected human effective dose was low and was 0.184 mSv/MBq (0.679 rem/mCi) in females and 0.205 mSv/MBq (0.757 rem/mCi) in males. There was no apparent normal tissue toxicity as shown by cell blood counts and blood biochemistry analyses at 168-fold and 25-fold excess of the projected human radioactive and mass dose of the agent. CONCLUSION: 89Zr-DFO-nimotuzumab had low organ absorbed dose and effective dose that makes it suitable for potential human use.

4.
Oncotarget ; 9(5): 6213-6227, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29464066

RESUMEN

Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody that is approved in many countries for the treatment of EGFR-positive cancers. Near infrared (NIR) fluorescent dye-labeled antibodies represent an attractive class of image-guided surgical probes because of their high specificity, tumor uptake, and low dissociation from tumor cells that express the antigen. In this study, we developed a NIR fluorescent dye-labeled nimotuzumab immunoconjugate, IRDye800CW-nimotuzumab, and evaluated in vitro binding with EGFR-positive cells, in vivo tumor uptake by NIR fluorescent imaging, and ex vivo biodistribution. There was no difference in binding between nimotuzumab and IRDye800CW-nimotuzumab to EGFR-positive cells. In mice bearing EGFR-positive xenografts, IRDye800CW-nimotuzumab uptake peaked at 4 days post injection and slowly decreased thereafter with high levels of accumulation still observed at 28 days post injection. In EGFR-positive xenografts, IRDye800CW-nimotuzumab showed more than 2-fold higher uptake in tumors compared to IRDye800CW-cetuximab. In addition, liver uptake of IRDye800CW-nimotuzumab was two-fold lower than cetuximab. The lower liver uptake of IRDye800CW-nimotuzumab could have implications on the selected dose for clinical trials of the immunoconjugate. In summary, this study shows that nimotuzumab is a good candidate for NIR fluorescent imaging and image-guided surgery.

5.
Vaccine ; 31(1): 89-95, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23142132

RESUMEN

Human epidermal growth factor receptor (HER1) constitutes a tumor associated antigen. Its overexpression in many epithelial tumors has been associated with bad prognosis and poor survival. Cancer vaccine based on the extracellular domain (ECD) of HER1 and adjuvated in very small sized proteoliposomes (VSSP) and Montanide ISA 51-VG is a new and complementary approach for the treatment of epithelial tumors. The present study deals with the immunogenicity of this vaccine in Macaca fascicularis monkeys and evaluation of its toxicity during 12 months. Twelve monkeys were randomized into two groups of 3 animals per sex: control and vaccinated. Treated monkeys received 9 doses of vaccination and were daily inspected for clinical signs. Body weight, rectal temperature, cardiac and respiratory rates were measured during the study. Humoral immune response, clinical pathology parameters and delayed type hypensensitivity were analyzed. Skin biopsy was performed at the end of the study in all animals. Animal's survival in the study was 100% (n=12). Local reactions were observed at the administration site of four treated animals (n=6), with two showing slight inflammatory cutaneous damage. Clinical pathology parameters were not affected. HER1 vaccine induced high IgG antibodies titers in the treated animals even when DTH was not observed. The induced antibodies recognized HER1+ tumor cell lines, decreased HER1 phosphorylation and showed anti-proliferative and pro-apoptotic effects in H125 cells. In general the present study showed that HER1 vaccine induced specific immune response in M. fascicularis monkeys and was well tolerated, suggesting it could be safely used in clinical studies in epithelial cancer patients.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Receptores ErbB/inmunología , Macaca fascicularis/inmunología , Animales , Anticuerpos , Western Blotting , Peso Corporal/fisiología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Citometría de Flujo , Humanos , Técnicas para Inmunoenzimas , Masculino
6.
Exp Toxicol Pathol ; 56(4-5): 313-9, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15816360

RESUMEN

h-R3 is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MAb). This receptor is over-expressed in the majority of tumors of epithelial origin, including glioblastomas. 188Rhenium (188Re) constitutes an ideal radionuclide for imagining and radioimmunotherapy, and its toxicity is known, nevertheless, it is unknown if 188Os, as 188Re's daughter, has any local or systemic toxicity effect when it is administered intracerebrally for treating intracranial tumors. For this reason we decided to assess the toxicity of stable 188Os once the complete decay of 188Re has occurred, by administering intracerebrally to rats the h-R3 labeled with 188Os. Forty rats (20 each sex) were distributed randomly into four experimental groups (ten per group): control group received 5microL of glucoheptonate solution vehicle; two other groups were treated with unlabeled or labeled h-R3 with 188Os. The remaining group served as a non-treated control group. A single 5 microL dose (2.5 microL into each lateral ventricle) of neutral solution containing 50 microg of h-R3 labeled initially with 13.25 microCi of 188Re was stereotactically administered into lateral ventricles 8 days after the conjugation with the radionuclide was done. Each animal was observed daily for detection of toxicity signs. Body weights were recorded on days 0, 7 and 14. Blood samples for analysis of hematological and clinical chemistry parameters were taken on days 0 and 14. Necropsy and histopathological studies were carried out at the end of the study. All animals gained weight by day 14. There were no changes in hematological and clinical chemistry, but minimal histopathological changes were observed at the application sites. This study shows that single doses of 188Os-h-R3 is tolerable and causes minimal local and no systemic toxicity effects in rats.


Asunto(s)
Anticuerpos Monoclonales/toxicidad , Encéfalo/efectos de los fármacos , Osmio/toxicidad , Radioisótopos/administración & dosificación , Radioisótopos/toxicidad , Animales , Anticuerpos Monoclonales/administración & dosificación , Encéfalo/patología , Receptores ErbB/inmunología , Femenino , Inyecciones Intraventriculares , Masculino , Osmio/administración & dosificación , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...