Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36012547

RESUMEN

Xanthophyllomyces dendrorhous is a natural source of astaxanthin and mycosporines. This yeast has been isolated from high and cold mountainous regions around the world, and the production of these secondary metabolites may be a survival strategy against the stress conditions present in its environment. Biosynthesis of astaxanthin is regulated by catabolic repression through the interaction between MIG1 and corepressor CYC8-TUP1. To evaluate the role of the stress-associated transcription factors SKN7, ROX1, and YAP6, we employed an omic and phenotypic approach. Null mutants were constructed and grown in two fermentable carbon sources. The yeast proteome and transcriptome were quantified by iTRAQ and RNA-seq, respectively. The total carotenoid, sterol, and mycosporine contents were determined and compared to the wild-type strain. Each mutant strain showed significant metabolic changes compared to the wild type that were correlated to its phenotype. In a metabolic context, the principal pathways affected were glycolysis/gluconeogenesis, the pentose phosphate (PP) pathway, and the citrate (TCA) cycle. Additionally, fatty acid synthesis was affected. The absence of ROX1 generated a significant decline in carotenoid production. In contrast, a rise in mycosporine and sterol synthesis was shown in the absence of the transcription factors SKN7 and YAP6, respectively.


Asunto(s)
Basidiomycota , Proteínas Fúngicas , Metabolismo Secundario , Factores de Transcripción , Basidiomycota/genética , Basidiomycota/metabolismo , Carotenoides/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Represoras/metabolismo , Esteroles/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
mSphere ; 5(2)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238568

RESUMEN

Xanthophyllomyces dendrorhous is a carotenogenic yeast with a singular metabolic capacity to produce astaxanthin, a valuable antioxidant pigment. This yeast can assimilate several carbon sources and sustain fermentation even under aerobic conditions. Since astaxanthin biosynthesis is affected by the carbon source, the study of carotenogenesis regulatory mechanisms is key for improving astaxanthin yield in X. dendrorhous This study aimed to elucidate the regulation of the metabolism of different carbon sources and the phenomenon of catabolic repression in this yeast. To this end, protein and transcript levels were quantified by iTRAQ (isobaric tags for relative and absolute quantification) and transcriptomic sequencing (RNA-seq) in the wild-type strain under conditions of glucose, maltose, or succinate treatment and in the mutant strains for genes MIG1, CYC8, and TUP1 under conditions of glucose treatment. Alternative carbon sources such as maltose and succinate affected the relative abundances of 14% of the wild-type proteins, which were mainly grouped into the carbohydrate metabolism category, with the glycolysis/gluconeogenesis and citrate cycle pathways being the most highly represented pathways. Each mutant strain showed significant proteomic profile changes, affecting approximately 2% of the total proteins identified, compared to the wild-type strain under glucose treatment conditions. Similarly to the results seen with the alternative carbon sources, the changes in the mutant strains mainly affected carbohydrate metabolism, with glycolysis/gluconeogenesis and the pentose phosphate and citrate cycle pathways being the most highly represented pathways. Our results showed convergence between carbon assimilation and catabolic repression in the strains studied. Interestingly, indications of cooperative, opposing, and overlapping processes during catabolic regulation were found. We also identified target proteins of the regulatory processes, reinforcing the likelihood of catabolic repression at the posttranscriptional level.IMPORTANCE The conditions affecting catabolic regulation in X. dendrorhous are complex and suggest the presence of an alternative mechanism of regulation. The repressors Mig1, Cyc8, and Tup1 are essential elements for the regulation of the use of glucose and other carbon sources. All play different roles but, depending on the growth conditions, can work in convergent, synergistic, and complementary ways to use carbon sources and to regulate other targets for yeast metabolism. Our results reinforced the belief that further studies in X. dendrorhous are needed to clarify a specific regulatory mechanism at the domain level of the repressors as well as its relationship with those of other metabolic repressors, i.e., the stress response, to elucidate carotenogenic regulation at the transcriptomic and proteomic levels in this yeast.


Asunto(s)
Basidiomycota/metabolismo , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica , Basidiomycota/genética , Metabolismo de los Hidratos de Carbono , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteómica , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
3.
J Proteomics ; 198: 132-144, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30553947

RESUMEN

Cadmium is a heavy metal present in contaminated soils. It has no biological role but when entering cells generates DNA damage, overexpression of stress response proteins and misfolded proteins, amongst other deleterious effects. Acidithiobacillus ferrooxidans is an acidophilic bacterium resisting high concentrations of heavy metals such as cadmium. This is important for industrial bioleaching processes where Cd+2 concentrations can be 5-100 mM. Cadmium resistance mechanisms in these microorganisms have not been fully characterized. A. ferrooxidans ATCC 53993 contains genes coding for possible metal resistance determinants such as efflux systems: P-type ATPases, RND transporters and cation diffusion facilitators. In addition, it has extra copies of these genes in its exclusive genomic island (GI). Several of these putative genes were characterized in the present report by determining their transcriptional expression profiles and functionality. Moreover, an iTRAQ proteomic analysis was carried out to explore new cadmium resistance determinants in this bacterium. Changes in iron oxidation components, upregulation of transport proteins and variations in ribosomal protein levels were seen. Finally, increased concentrations of exclusive putative cadmium ATPases present in strain ATCC 53993 GI and other non-identified proteins such as Lferr_0210, forming part of a possible operon, could explain its extreme cadmium resistance. SIGNIFICANCE: Cadmium is a very toxic heavy metal present in mining operations and contaminated environments, it can affect all living organisms, including humans. Therefore, it is important to know the resistance mechanisms of bacteria highly resistant to this metal. These microorganisms in turn, can be used to bioremediate more efficiently environments highly polluted with metals. The results obtained suggest A. ferrooxidans strain ATCC 53993 can be an efficient bacterium to remove cadmium, copper and other metals from contaminated sites.


Asunto(s)
Acidithiobacillus/metabolismo , Proteínas Bacterianas/biosíntesis , Cadmio/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteómica , Contaminantes del Suelo/farmacología , Biodegradación Ambiental
4.
Genes (Basel) ; 9(7)2018 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-29996532

RESUMEN

Acidithiobacillus ferrooxidans resists extremely high concentrations of copper. Strain ATCC 53993 is much more resistant to the metal compared with strain ATCC 23270, possibly due to the presence of a genomic island in the former one. The global response of strain ATCC 53993 to copper was analyzed using iTRAQ (isobaric tag for relative and absolute quantitation) quantitative proteomics. Sixty-seven proteins changed their levels of synthesis in the presence of the metal. On addition of CusCBA efflux system proteins, increased levels of other envelope proteins, such as a putative periplasmic glucan biosynthesis protein (MdoG) involved in the osmoregulated synthesis of glucans and a putative antigen O polymerase (Wzy), were seen in the presence of copper. The expression of A. ferrooxidansmdoG or wzy genes in a copper sensitive Escherichia coli conferred it a higher metal resistance, suggesting the possible role of these components in copper resistance of A. ferrooxidans. Transcriptional levels of genes wzy, rfaE and wzz also increased in strain ATCC 23270 grown in the presence of copper, but not in strain ATCC 53993. Additionally, in the absence of this metal, lipopolysaccharide (LPS) amounts were 3-fold higher in A. ferrooxidans ATCC 53993 compared with strain 23270. Nevertheless, both strains grown in the presence of copper contained similar LPS quantities, suggesting that strain 23270 synthesizes higher amounts of LPS to resist the metal. On the other hand, several porins diminished their levels in the presence of copper. The data presented here point to an essential role for several envelope components in the extreme copper resistance by this industrially important acidophilic bacterium.

5.
Data Brief ; 12: 13-17, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28373998

RESUMEN

Here, we provide the dataset associated with our research article on the polyphosphate metabolism entitled, "Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses". By integrating different omics levels (transcriptome, proteome and phenome), we were able to study Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and Δppk1-ppx). We have compiled here all datasets from DNA microarrys, q-proteomic (Isotope-Coded Protein Labeling, ICPL) and phenomic (Phenotype microarray) raw data we have obtained in all polyP metabolism mutants.

6.
J Proteomics ; 145: 37-45, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27079981

RESUMEN

UNLABELLED: Acidithiobacillus ferrooxidans is used in industrial bioleaching of minerals to extract valuable metals. A. ferrooxidans strain ATCC 53993 is much more resistant to copper than other strains of this microorganism and it has been proposed that genes present in an exclusive genomic island (GI) of this strain would contribute to its extreme copper tolerance. ICPL (isotope-coded protein labeling) quantitative proteomics was used to study in detail the response of this bacterium to copper. A high overexpression of RND efflux systems and CusF copper chaperones, both present in the genome and the GI of strain ATCC 53993 was found. Also, changes in the levels of the respiratory system proteins such as AcoP and Rus copper binding proteins and several proteins with other predicted functions suggest that numerous metabolic changes are apparently involved in controlling the effects of the toxic metal on this acidophile. SIGNIFICANCE: Using quantitative proteomics we overview the adaptation mechanisms that biomining acidophiles use to stand their harsh environment. The overexpression of several genes present in an exclusive genomic island strongly suggests the importance of the proteins coded in this DNA region in the high tolerance of A. ferrooxidans ATCC 53993 to metals.


Asunto(s)
Acidithiobacillus/efectos de los fármacos , Cobre/farmacología , Proteómica/métodos , Acidithiobacillus/química , Adaptación Fisiológica/genética , Proteínas Bacterianas/análisis , Proteínas Bacterianas/fisiología , Tolerancia a Medicamentos/genética , Genoma Bacteriano
7.
Front Microbiol ; 2: 79, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21833324

RESUMEN

Production of sulfur globules during sulfide or thiosulfate oxidation is a characteristic feature of some sulfur bacteria. Although their generation has been reported in Acidithiobacillus ferrooxidans, its mechanism of formation and deposition, as well as the physiological significance of these globules during sulfur compounds oxidation, are currently unknown. Under oxygen-sufficient conditions (OSC), A. ferrooxidans oxidizes thiosulfate to tetrathionate, which accumulates in the culture medium. Tetrathionate is then oxidized by a tetrathionate hydrolase (TTH) generating thiosulfate, elemental sulfur, and sulfate as final products. We report here a massive production of extracellular conspicuous sulfur globules in thiosulfate-grown A. ferrooxidans cultures shifted to oxygen-limiting conditions (OLC). Concomitantly with sulfur globule deposition, the extracellular concentration of tetrathionate greatly diminished and sulfite accumulated in the culture supernatant. A. ferrooxidans cellular TTH activity was negligible in OLC-incubated cells, indicating that this enzymatic activity was not responsible for tetrathionate disappearance. On the other hand, supernatants from both OSC- and OLC-incubated cells showed extracellular TTH activity, which most likely accounted for tetrathionate consumption in the culture medium. The extracellular TTH activity described here: (i) gives experimental support to the TTH-driven model for hydrophilic sulfur globule generation, (ii) explains the extracellular location of A. ferrooxidans sulfur deposits, and (iii) strongly suggests that the generation of sulfur globules in A. ferrooxidans corresponds to an early step during its adaptation to an anaerobic lifestyle.

8.
Peptides ; 32(9): 1909-16, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21787820

RESUMEN

Antimicrobial peptides (AMP) have been widely described in several organisms from different kingdoms. We recently designed and evaluated a synthetic version of an AMP isolated and characterized from Argopecten purpuratus hemocytes. This study describes the generation of a chimaeric gene encoding for Ap-S, the use of this construct to transform E. coli strain BL21, and the evaluation of the purified recombinant Ap-S (rApS) as an antifungal agent. The proposed gene coding for rAp-S consists of 93 nucleotides arranged downstream from the IPTG-inducible T7 promoter. The best synthesis conditions were obtained after E. coli cultivation at 26°C for 3h, which allowed for the production of an rAp-S-enriched fraction containing the peptide at 249µM. Mass spectrometry analysis of the purified rAp-S (3085.80Da) showed the addition of a glycine residue on its N-terminal end derived from vector design and peptide purification. The purified rApS fraction was assayed for antifungal activity by direct addition of purified rApS elution to potato dextrose agar media at a final concentration of 81nM. These assays showed important growth inhibitions of both biotrophic (Fusarium oxysporum, Trichoderma harzianum) and necrotrophic (Botrytis cinerea, Alternaria spp.) fungi in that the hyphae structures and spore count were affected in all cases. The strategy of cloning and expressing rAp-S in E. coli, the high yield obtained and its successful use for controlling pathogenic fungi suggest that this molecule could be applied to agricultural crops using various management strategies.


Asunto(s)
Antifúngicos/farmacología , Escherichia coli/metabolismo , Pectinidae/química , Péptidos/farmacología , Alternaria/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antifúngicos/aislamiento & purificación , Secuencia de Bases , Botrytis/efectos de los fármacos , Clonación Molecular , Recuento de Colonia Microbiana , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Fusarium/efectos de los fármacos , Genes Sintéticos , Vectores Genéticos , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Trichoderma/efectos de los fármacos
9.
Helicobacter ; 16(3): 189-99, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21585604

RESUMEN

BACKGROUND: Helicobacter pylori colonizes the acid environment of the gastric mucosa. Like other enteric bacterial pathogens, including Salmonella enterica, which must survive a brief exposure to that environment, H. pylori displays a rapid response to subtle changes in pH, which confers an increased ability to survive at more extreme acidic pH. This two-step acid tolerance response (ATR) requires de novo protein synthesis and is dependent on the function of the global regulatory protein Fur. OBJECTIVE: We have explored the physiological bases of the ATR in H. pylori. MATERIALS AND METHODS: Proteomic analysis of phenotypes of H. pylori and fur mutant strains show that subtle pH changes elicit significant changes in the pattern of proteins synthesized. RESULTS: A loss-of-function mutation in the fur gene, obtained by insertion of an antibiotic resistance cassette, indicated that Fur regulates the expression of a fraction of H. pylori proteins. CONCLUSION: A subset of proteins is involved in the ATR and confer a negative ATR phenotype.


Asunto(s)
Ácidos/metabolismo , Proteínas Bacterianas/metabolismo , Helicobacter pylori/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/genética , Proteínas Represoras/genética
10.
BMC Microbiol ; 10: 7, 2010 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-20067623

RESUMEN

BACKGROUND: Inorganic polyphosphate (polyP), a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2) and degraded by exopolyphosphatase (PPX). Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. RESULTS: The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS) structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. CONCLUSIONS: The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP) formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA) cycle, beta-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Polifosfatos/metabolismo , Pseudomonas/crecimiento & desarrollo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Proteínas Bacterianas/genética , Biopelículas , Metabolismo Energético , Lipopolisacáridos/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Proteoma/metabolismo , Proteómica , Pseudomonas/enzimología , Pseudomonas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA