Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biotechnol ; 8: 83, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18983675

RESUMEN

BACKGROUND: Due to the global occurrence of multi-drug-resistant malarial parasites (Plasmodium falciparum), the anti-malarial drug most effective against malaria is artemisinin, a natural product (sesquiterpene lactone endoperoxide) extracted from sweet wormwood (Artemisia annua). However, artemisinin is in short supply and unaffordable to most malaria patients. Artemisinin can be semi-synthesized from its precursor artemisinic acid, which can be synthesized from simple sugars using microorganisms genetically engineered with genes from A. annua. In order to develop an industrially competent yeast strain, detailed analyses of microbial physiology and development of gene expression strategies are required. RESULTS: Three plant genes coding for amorphadiene synthase, amorphadiene oxidase (AMO or CYP71AV1), and cytochrome P450 reductase, which in concert divert carbon flux from farnesyl diphosphate to artemisinic acid, were expressed from a single plasmid. The artemisinic acid production in the engineered yeast reached 250 microg mL(-1) in shake-flask cultures and 1 g L(-1) in bio-reactors with the use of Leu2d selection marker and appropriate medium formulation. When plasmid stability was measured, the yeast strain synthesizing amorphadiene alone maintained the plasmid in 84% of the cells, whereas the yeast strain synthesizing artemisinic acid showed poor plasmid stability. Inactivation of AMO by a point-mutation restored the high plasmid stability, indicating that the low plasmid stability is not caused by production of the AMO protein but by artemisinic acid synthesis or accumulation. Semi-quantitative reverse-transcriptase (RT)-PCR and quantitative real time-PCR consistently showed that pleiotropic drug resistance (PDR) genes, belonging to the family of ATP-Binding Cassette (ABC) transporter, were massively induced in the yeast strain producing artemisinic acid, relative to the yeast strain producing the hydrocarbon amorphadiene alone. Global transcriptional analysis by yeast microarray further demonstrated that the induction of drug-resistant genes such as ABC transporters and major facilitator superfamily (MSF) genes is the primary cellular stress-response; in addition, oxidative and osmotic stress responses were observed in the engineered yeast. CONCLUSION: The data presented here suggest that the engineered yeast producing artemisinic acid suffers oxidative and drug-associated stresses. The use of plant-derived transporters and optimizing AMO activity may improve the yield of artemisinic acid production in the engineered yeast.


Asunto(s)
Antimaláricos/metabolismo , Artemisininas/metabolismo , Ingeniería Genética/métodos , Profármacos/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Artemisia annua/química , Artemisia annua/genética , Farmacorresistencia Fúngica Múltiple/genética , Fermentación , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes de Plantas , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , Plásmidos , Mutación Puntual , Sesquiterpenos Policíclicos , ARN de Hongos/genética , Saccharomyces cerevisiae/genética , Sesquiterpenos/metabolismo
2.
FEBS J ; 275(8): 1852-9, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18336574

RESUMEN

Using a degenerate primer designed from triterpene synthase sequences, we have isolated a new gene from the medicinal plant Artemisia annua. The predicted protein is highly similar to beta-amyrin synthases (EC 5.4.99.-), sharing amino acid sequence identities of up to 86%. Expression of the gene, designated AaBAS, in Saccharomyces cerevisiae, followed by GC/MS analysis, confirmed the encoded enzyme as a beta-amyrin synthase. Through engineering the sterol pathway in S. cerevisiae, we explore strategies for increasing triterpene production, using AaBAS as a test case. By manipulation of two key enzymes in the pathway, 3-hydroxy-3-methylglutaryl-CoA reductase and lanosterol synthase, we have improved beta-amyrin production by 50%, achieving levels of 6 mg.L(-1) culture. As we have observed a 12-fold increase in squalene levels, it appears that this strain has the capacity for even higher beta-amyrin production. Options for further engineering efforts are explored.


Asunto(s)
Artemisia annua/enzimología , Transferasas Intramoleculares/metabolismo , Saccharomyces cerevisiae/metabolismo , Triterpenos/metabolismo , Secuencia de Aminoácidos , Artemisia annua/genética , Secuencia Conservada , Cromatografía de Gases y Espectrometría de Masas , Transferasas Intramoleculares/química , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/aislamiento & purificación , Datos de Secuencia Molecular , Ingeniería de Proteínas , Saccharomyces cerevisiae/genética , Alineación de Secuencia , Triterpenos/química
3.
Biotechnol Bioeng ; 100(2): 371-8, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18175359

RESUMEN

Saccharomyces cerevisiae utilizes several regulatory mechanisms to maintain tight control over the intracellular level of farnesyl diphosphate (FPP), the central precursor to nearly all yeast isoprenoid products. High-level production of non-native isoprenoid products requires that FPP flux be diverted from production of sterols to the heterologous metabolic reactions. To do so, expression of the gene encoding squalene synthase (ERG9), the first committed step in sterol biosynthesis, was down-regulated by replacing its native promoter with the methionine-repressible MET3 promoter. The intracellular levels of FPP were then assayed by expressing the gene encoding amorphadiene synthase (ADS) and converting the FPP to amorphadiene. Under certain culture conditions amorphadiene production increased fivefold upon ERG9 repression. With increasing flux to amorphadiene, squalene and ergosterol production each decreased. The levels of these three metabolites were dependent not only upon the level of ERG9 repression, but also the timing of its repression relative to the induction of ADS and genes responsible for enhancing flux to FPP.


Asunto(s)
Farnesil Difosfato Farnesil Transferasa/metabolismo , Mejoramiento Genético/métodos , Fosfatos de Poliisoprenilo/metabolismo , Saccharomyces cerevisiae/fisiología , Sesquiterpenos/metabolismo , Transducción de Señal/fisiología , Regulación hacia Abajo/fisiología , Farnesil Difosfato Farnesil Transferasa/genética
4.
Metab Eng ; 9(2): 160-8, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17196416

RESUMEN

Amorphadiene, a sesquiterpene precursor to the anti-malarial drug artemisinin, is synthesized by the cyclization of farnesyl pyrophosphate (FPP). Saccharomyces cerevisiae produces FPP through the mevalonate pathway using acetyl-CoA as a starting compound. In order to enhance the supply of acetyl-CoA to the mevalonate pathway and achieve high-level production of amorphadiene, we engineered the pyruvate dehydrogenase bypass in S. cerevisiae. Overproduction of acetaldehyde dehydrogenase and introduction of a Salmonella enterica acetyl-CoA synthetase variant increased the carbon flux into the mevalonate pathway resulting in increased amorphadiene production. This work will be generally applicable to the production of a broad range of isoprenoids in yeast.


Asunto(s)
Acetilcoenzima A/genética , Aldehído Oxidorreductasas/genética , Mejoramiento Genético/métodos , Ingeniería de Proteínas/métodos , Complejo Piruvato Deshidrogenasa/genética , Saccharomyces cerevisiae/fisiología , Terpenos/metabolismo , Proteínas Recombinantes/metabolismo , Transducción de Señal/fisiología
5.
Biotechnol Bioeng ; 95(4): 684-91, 2006 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-16878333

RESUMEN

Reconstructing synthetic metabolic pathways in microbes holds great promise for the production of pharmaceuticals in large-scale fermentations. By recreating biosynthetic pathways in bacteria, complex molecules traditionally harvested from scarce natural resources can be produced in microbial cultures. Here we report on a strain of Escherichia coli containing a heterologous, nine-gene biosynthetic pathway for the production of the terpene amorpha-4,11-diene, a precursor to the anti-malarial drug artemisinin. Previous reports have underestimated the productivity of this strain due to the volatility of amorphadiene. Here we show that amorphadiene evaporates from a fermentor with a half-life of about 50 min. Using a condenser, we take advantage of this volatility by trapping the amorphadiene in the off-gas. Amorphadiene was positively identified using nuclear magnetic resonance spectroscopy and determined to be 89% pure as collected. We captured amorphadiene as it was produced in situ by employing a two-phase partitioning bioreactor with a dodecane organic phase. Using a previously characterized caryophyllene standard to calibrate amorphadiene production and capture, the concentration of amorphadiene produced was determined to be 0.5 g/L of culture medium. A standard of amorphadiene collected from the off-gas showed that the caryophyllene standard overestimated amorphadiene production by approximately 30%.


Asunto(s)
Artemisininas/metabolismo , Escherichia coli/metabolismo , Fermentación/fisiología , Gases/aislamiento & purificación , Terpenos/metabolismo , Antimaláricos/síntesis química , Reactores Biológicos , Semivida , Sesquiterpenos Policíclicos , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/metabolismo , Terpenos/aislamiento & purificación , Volatilización
6.
Nature ; 440(7086): 940-3, 2006 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-16612385

RESUMEN

Malaria is a global health problem that threatens 300-500 million people and kills more than one million people annually. Disease control is hampered by the occurrence of multi-drug-resistant strains of the malaria parasite Plasmodium falciparum. Synthetic antimalarial drugs and malarial vaccines are currently being developed, but their efficacy against malaria awaits rigorous clinical testing. Artemisinin, a sesquiterpene lactone endoperoxide extracted from Artemisia annua L (family Asteraceae; commonly known as sweet wormwood), is highly effective against multi-drug-resistant Plasmodium spp., but is in short supply and unaffordable to most malaria sufferers. Although total synthesis of artemisinin is difficult and costly, the semi-synthesis of artemisinin or any derivative from microbially sourced artemisinic acid, its immediate precursor, could be a cost-effective, environmentally friendly, high-quality and reliable source of artemisinin. Here we report the engineering of Saccharomyces cerevisiae to produce high titres (up to 100 mg l(-1)) of artemisinic acid using an engineered mevalonate pathway, amorphadiene synthase, and a novel cytochrome P450 monooxygenase (CYP71AV1) from A. annua that performs a three-step oxidation of amorpha-4,11-diene to artemisinic acid. The synthesized artemisinic acid is transported out and retained on the outside of the engineered yeast, meaning that a simple and inexpensive purification process can be used to obtain the desired product. Although the engineered yeast is already capable of producing artemisinic acid at a significantly higher specific productivity than A. annua, yield optimization and industrial scale-up will be required to raise artemisinic acid production to a level high enough to reduce artemisinin combination therapies to significantly below their current prices.


Asunto(s)
Antimaláricos/metabolismo , Artemisininas/metabolismo , Ingeniería Genética , Malaria Falciparum/tratamiento farmacológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Animales , Antimaláricos/química , Antimaláricos/economía , Artemisia annua/enzimología , Artemisia annua/genética , Artemisininas/química , Artemisininas/economía , Reactores Biológicos , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Costos de los Medicamentos/tendencias , Fermentación , Cromatografía de Gases y Espectrometría de Masas , Malaria Falciparum/economía , Ácido Mevalónico/metabolismo , Datos de Secuencia Molecular , Plasmodium falciparum , Sesquiterpenos/química , Sesquiterpenos/economía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA