Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Mol Pharm ; 21(3): 1479-1489, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38373877

RESUMEN

In a competitive coformer exchange reaction, a recent topic of interest in pharmaceutical research, the coformer in a pharmaceutical cocrystal is exchanged with another coformer that is expected to form a cocrystal that is more stable. There will be a competition between coformers to form the most stable product through the formation of hydrogen bonds. This will cause destabilization of the pharmaceutical products during processing or storage. Therefore, it is important to develop a mechanistic understanding of this transformation by monitoring each and every step of the reaction, employing a technique such as 1H nuclear magnetic resonance (NMR). In this study, an in situ monitoring of a coformer exchange reaction is carried out by 1H magic angle spinning (MAS) solid-state NMR (SSNMR) at a spinning frequency of 60 kHz. The changes in caffeine maleic acid cocrystals on addition of glutaric acid and caffeine glutaric cocrystals on addition of maleic acid were monitored. In all of the reactions, it has been observed that caffeine glutaric acid Form I is formed. When glutaric acid was added to 2:1 caffeine maleic acid, the formation of metastable 1:1 caffeine glutaric acid Form I was observed at the start of the experiment, indicating that the centrifugal pressure is enough for the formation. The difference in the end product of the reactions with a similar reaction pathway of 1:1 and 2:1 reactant stoichiometry indicates that a complete replacement of maleic acid has occurred only in the 1:1 stoichiometry of the reactants. The polymorphic transition of caffeine glutaric acid Form II to Form I at higher temperatures was a crucial reason that triggered the exchange of glutaric acid with maleic acid in the reaction of caffeine glutaric acid and maleic acid. Our results are novel since the new reaction pathways in competitive coformer exchange reactions enabled understanding the remarkable role of stoichiometry, polymorphism, temperature, and centrifugal pressure.


Asunto(s)
Cafeína , Glutaratos , Maleatos , Cafeína/química , Espectroscopía de Resonancia Magnética
2.
J Environ Manage ; 324: 116297, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174475

RESUMEN

Pongamia pinnata (L.) Pierre (Pongamia) is a tree native to Southeast Asia. Recently, interest in Pongamia focused on its potential as a biofuel source as its seeds contain around 40% oil. However, Pongamia has multiple applications beyond biofuel production. It is a legume, can form symbiotic associations with mycorrhizal fungi, has been shown to be tolerant to drought, salinity, and heavy metals in soil, and has potential to mitigate climate change. Additionally, Pongamia oil has medicinal properties, can be used as biopesticide, insect repellent, to produce soap, and as a source of edible grade vegetable oil. The seed cake can be used as a source of bioenergy, food and feed protein, and organic fertiliser, and the flowers are a good source of pollen and nectar. Pongamia can also bring socio-economic benefits as its ability to restore degraded and contaminated land provides opportunities for local communities through novel valorisation pathways. These multiple applications have potential to form part of a circular bioeconomy in line with sustainable development goals. Although research on the multiple applications of Pongamia has grown considerably, knowledge gaps remain and these need to be addressed so that the full potential of Pongamia can be achieved. Further understanding of the mechanisms underlying its resilience to abiotic stresses, phytoremediation potential and biotic interactions should be a priority, and co-ordinated breeding efforts will be key. Here, we critically review the available literature on Pongamia and highlight gaps in knowledge in which future research should focus on to ensure that the full potential of this versatile tree can be achieved. We conclude that Pongamia can potentially form part of a circular bioeconomy and that harnessing the multiple applications of Pongamia in a holistic manner, with collaboration among key stakeholders, is crucial for the successful application of its benefits far beyond biofuel production.


Asunto(s)
Millettia , Pongamia , Millettia/metabolismo , Secuestro de Carbono , Biocombustibles , Fitomejoramiento , Árboles/metabolismo , Factores Socioeconómicos
3.
Front Pharmacol ; 13: 930515, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35754488

RESUMEN

Propolis is a resinous product collected by bees from plant exudates to protect and maintain hive homeostasis. Propolis has been used therapeutically for centuries as folk medicine. Modern research investigating the diversity of the chemical composition and plant sources, biological activity, extraction processes, analytical methods, and therapeutic properties in clinical settings have been carried out extensively since the 1980s. Due to its antimicrobial, anti-inflammatory, and immuno-modulator properties, propolis appears to be a suitable bioactive component to be incorporated into biomaterials. This review article attempts to analyze the potential application of propolis as a biomaterial component from the available experimental evidence. The efficacy and compabitility of propolis depend upon factors, such as types of extracts and types of biomaterials. Generally, propolis appears to be compatible with hydroxyapatite/calcium phosphate-based biomaterials. Propolis enhances the antimicrobial properties of the resulting composite materials while improving the physicochemical properties. Furthermore, propolis is also compatible with wound/skin dressing biomaterials. Propolis improves the wound healing properties of the biomaterials with no negative effects on the physicochemical properties of the composite biomaterials. However, the effect of propolis on the glass-based biomaterials cannot be generalized. Depending on the concentration, types of extract, and geographical sources of the propolis, the effect on the glass biomaterials can either be an improvement or detrimental in terms of mechanical properties such as compressive strength and shear bond strength. In conclusion, two of the more consistent impacts of propolis across these different types of biomaterials are the enhancement of the antimicrobial and the immune-modulator/anti-inflammatory properties resulting from the combination of propolis and the biomaterials.

5.
Drug Discov Today ; 27(1): 315-325, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34537331

RESUMEN

Pharma 4.0, a technology ecosystem in drug development analogous to Industry 4.0 in healthcare, is transforming the traditional approach to drug discovery and development, aligning product quality with less time to market, and creating intelligent stakeholder networks through effective collaborations. The wide range of potential Pharma 4.0 networks have produced several conceptualizations, which have led to a lack of clarity and definition. The main emphasis of this paper is on the clinical trial stage of drug development in the Pharma 4.0 era. It highlights the merged computerized technologies that are currently used in clinical research, and proposes a framework for integrating Pharma 4.0 technologies. The impact of and barriers to employing the proposed framework are discussed, highlighting its potential and some future research applications.


Asunto(s)
Ensayos Clínicos como Asunto , Desarrollo de Medicamentos , Industria Farmacéutica , Tecnología Farmacéutica/tendencias , Diseño Asistido por Computadora , Desarrollo de Medicamentos/métodos , Desarrollo de Medicamentos/organización & administración , Industria Farmacéutica/métodos , Industria Farmacéutica/organización & administración , Humanos , Marco Interseccional , Colaboración Intersectorial
6.
Molecules ; 26(15)2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34361742

RESUMEN

The biological activities of propolis samples are the result of many bioactive compounds present in the propolis. The aim of the present study was to determine the various chemical compounds of some selected propolis samples collected from Palestine and Morocco by the High-Performance Liquid Chromatography-Photodiode Array Detection (HPLC-PDA) method, as well as the antioxidant and antibacterial activities of this bee product. The chemical analysis of propolis samples by HPLC-PDA shows the cinnamic acid content in the Palestinian sample is higher compared to that in Moroccan propolis. The results of antioxidant activity demonstrated an important free radical scavenging activity (2,2-Diphenyl-1-picrylhydrazyl (DPPH); 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid (ABTS) and reducing power assays) with EC50 values ranging between 0.02 ± 0.001 and 0.14 ± 0.01 mg/mL. Additionally, all tested propolis samples possessed a moderate antibacterial activity against bacterial strains. Notably, Minimum Inhibitory Concentrations (MICs) values ranged from 0.31 to 2.50 mg/mL for Gram-negative bacterial strains and from 0.09 to 0.125 mg/mL for Gram-positive bacterial strains. The S2 sample from Morocco and the S4 sample from Palestine had the highest content of polyphenol level. Thus, the strong antioxidant and antibacterial properties were apparently due to the high total phenolic and flavone/flavonol contents in the samples. As a conclusion, the activities of propolis samples collected from both countries are similar, while the cinnamic acid in the Palestinian samples was more than that of the Moroccan samples.


Asunto(s)
Antibacterianos/química , Antioxidantes/química , Cinamatos/química , Fenoles/química , Própolis/química , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Abejas/fisiología , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Cinamatos/aislamiento & purificación , Cinamatos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/crecimiento & desarrollo , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana , Medio Oriente , Marruecos , Fenoles/aislamiento & purificación , Fenoles/farmacología , Picratos/antagonistas & inhibidores , Polifenoles , Análisis de Componente Principal , Própolis/aislamiento & purificación , Ácidos Sulfónicos/antagonistas & inhibidores
7.
Molecules ; 26(16)2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34443664

RESUMEN

Propolis is a resinous natural product collected by honeybees (Apis mellifera and others) from tree exudates that has been widely used in folk medicine. The present study was carried out to investigate the fatty acid composition, chemical constituents, antioxidant, and xanthine oxidase (XO) inhibitory activity of Jordanian propolis, collected from Al-Ghour, Jordan. The hexane extract of Jordanian propolis contained different fatty acids, which are reported for the first time by using GC-FID. The HPLC was carried out to identify important chemical constituents such as fatty acids, polyphenols and α-tocopherol. The antioxidant and xanthine oxidase inhibitory activities were also monitored. The major fatty acid identified were palmitic acid (44.6%), oleic acid (18:1∆9cis, 24.6%), arachidic acid (7.4%), stearic acid (5.4%), linoleic acid (18:2∆9-12cis, 3.1%), caprylic acid (2.9%), lignoceric acid (2.6%), cis-11,14-eicosaldienoic acid (20:2∆11-14cis, 2.4%), palmitoleic acid (1.5%), cis-11-eicosenoic acid (1.2%), α-linolenic acid (18:3∆9-12-15cis, 1.1%), cis-13,16-docosadienoic acid (22:2∆13-16cis, 1.0%), along with other fatty acids. The major chemical constituents identified using gradient HPLC-PDA analysis were pinocembrin (2.82%), chrysin (1.83%), luteolin-7-O-glucoside (1.23%), caffeic acid (1.12%), caffeic acid phenethyl ester (CAPE, 0.79%), apigenin (0.54%), galangin (0.46%), and luteolin (0.30%); while the minor constituents were hesperidin, quercetin, rutin, and vanillic acid. The percentage of α-tocopherol was 2.01 µg/g of the lipid fraction of propolis. Antioxidant properties of the extracts were determined via DPPH radical scavenging. The DPPH radical scavenging activities (IC50) of different extracts ranged from 6.13 to 60.5 µg/mL compared to ascorbic acid (1.21 µg/mL). The xanthine oxidase inhibition (IC50) ranged from 75.11 to 250.74 µg/mL compared to allopurinol (0.38 µg/mL). The results indicate that the various flavonoids, phenolic compounds, α-tocopherol, and other constituents which are present in propolis are responsible for the antioxidant and xanthine oxidation inhibition activity. To evaluate the safety studies of propolis, the pesticide residues were also monitored by LC-MS-MS 4500 Q-Trap. Trace amounts of pesticide residue (ng/mL) were detected in the samples, which are far below the permissible limit as per international guidelines.


Asunto(s)
Antioxidantes/química , Ácidos Grasos/química , Residuos de Plaguicidas/química , Própolis/química , Antioxidantes/farmacología , Ácidos Cafeicos/química , Ácidos Cafeicos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Ácidos Grasos/aislamiento & purificación , Flavonoides/química , Flavonoides/aislamiento & purificación , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/aislamiento & purificación , Residuos de Plaguicidas/aislamiento & purificación , Fenoles/química , Fenoles/aislamiento & purificación , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/química , Alcohol Feniletílico/aislamiento & purificación , Rutina/química
8.
Sci Rep ; 11(1): 8907, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33903654

RESUMEN

Taste masking of paracetamol was achieved by preparing amorphous solid dispersion (ASD) using modified coacervation method. The method is based on dissolving the drug and polymeric carrier in water adjusted to certain pH level. Then, precipitation of ASD granules is performed by gradually changing pH level. Therefore, the chosen drug and polymer should obtain appropriate acidic or basic groups to enable pH-dependent solvation. Moreover, using solubility enhancing additives such as sodium lauryl sulphate (SLS) and low viscosity polyethylene glycol (PEG 400) found to be essential in aiding drug/polymer aqueous solvation which enhanced amorphization, hence taste masking and drug loading. Solid dispersion between Paracetamol and Eudragit E was formed and that proved by FT-IR, DSC, PXRD and SEM. Also, Paracetamol was released after 2 min in 0.1 N hydrochloric acid medium and the taste of masking forms are accepted from all volunteers. Modified coacervation method does not involve organic solvents, high temperatures, or sophisticated instruments commonly used in taste masking methods. Using PEG 400 resulted in significantly higher drug loading and dissolution rate compared to SLS granules. Moreover, using previously reported scoring system for the evaluation of taste masking methods shows that pH dependent coacervation obtained high scoring over common methods and thus display a robust potential for industrial applications.

9.
Pharm Dev Technol ; 25(9): 1139-1149, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32729753

RESUMEN

The objective of the study was to explore the potential of a novel nicotinamide extrudate as an anti-aging platform compared to the conventional gel. Nicotinamide extrudates were prepared by hot melt extrusion and characterized pharmaceutically for their thermal behavior, mositure uptake, skin adhesion, and deposition in different skin layers. The pharmacological potential of the extrudates was explored in terms of induction of skin amino acids, cellular energy estimation, 8-hydroxy-2-deoxyguanosine content, Nitrate + nitrite content and histological chacaterization of collagen area percent. Results revealed that the extrusion technique managed to amorphize nicotinamide and enhance its skin deposition (46%) compared to the gel form which only showed about 10% deposition, owing to the mucoadhesive nature of the former. Extrudates were also found superior to the gel form as demonstrated by the increased amino acids level (glycine, proline, hydroxyproline), increased cellular energy, decreased oxidative stress and increased collagen formation. Nictotinamide extrudates were proven to be a scalable promising anti-aging platform which are worthy of entering the cosmeceutical market as products.


Asunto(s)
Envejecimiento/efectos de los fármacos , Colágeno/farmacología , Cosmecéuticos/farmacología , Geles/farmacología , Niacinamida/farmacología , Envejecimiento/metabolismo , Aminoácidos/metabolismo , Animales , Colágeno/química , Cosmecéuticos/química , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Femenino , Geles/química , Masculino , Niacinamida/química , Estrés Oxidativo/efectos de los fármacos , Polímeros/química , Ratas , Ratas Wistar , Piel/efectos de los fármacos , Piel/metabolismo , Solubilidad/efectos de los fármacos
10.
Int J Pharm ; 575: 118908, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-31809859

RESUMEN

A study has been carried out to investigate controlled release performance of caplet shaped injection moulded (IM) amorphous solid dispersion (ASD) tablets based on the model drug AZD0837 and polyethylene oxide (PEO). The physical/chemical storage stability and release robustness of the IM tablets were characterized and compared to that of conventional extended release (ER) hydrophilic matrix tablets of the same raw materials and compositions manufactured via direct compression (DC). To gain an improved understanding of the release mechanisms, the dissolution of both the polymer and the drug were studied. Under conditions where the amount of dissolution media was limited, the controlled release ASD IM tablets demonstrated complete and synchronized release of both PEO and AZD0837 whereas the release of AZD0837 was found to be slower and incomplete from conventional direct compressed ER hydrophilic matrix tablets. The results clearly indicated that AZD0837 remained amorphous throughout the dissolution process and was maintained in a supersaturated state and hence kept stable with the aid of the polymeric carrier when released in a synchronized manner. In addition, it was found that the IM tablets were robust to variation in hydrodynamics of the dissolution environment and PEO molecular weight.


Asunto(s)
Amidinas/química , Azetidinas/química , Polietilenglicoles/química , Preparaciones de Acción Retardada/química , Composición de Medicamentos , Liberación de Fármacos , Comprimidos
11.
J Pharm Sci ; 108(8): 2505-2516, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30905708

RESUMEN

We report formation of polymorphs and new eutectics and cocrystals of curcumin, a sparingly water-soluble active component in turmeric, structurally similar to cinnamic acid. The curcumin polymorphs were formed using liquid antisolvent precipitation, where acetone acted as a solvent and water was used as the antisolvent. The metastable form 2 of curcumin was successfully prepared in varied morphology over a wide range of solvent-to-antisolvent ratio and under acidic pH conditions. We also report formation of new eutectics and cocrystals of curcumin with cinnamic acid acting as a coformer. The binary phase diagrams were studied using differential scanning calorimetry and predicted formation of the eutectics at the curcumin mole fraction of 0.15 and 0.33, whereas a cocrystal was formed at 0.3 mole fraction of curcumin in the curcumin-cinnamic acid mixture. The formation of the cocrystal was supported with X-ray powder diffraction, the enthalpy of fusion values, Fourier-transform infrared spectroscopy, and scanning electron microscopy. The hydrogen bond interaction between curcumin and cinnamic acid was predicted from Fourier-transform infrared spectra, individually optimized curcumin and cinnamic acid structures by quantum mechanical calculations using Gaussian-09 and their respective unit cell packing structures.


Asunto(s)
Antineoplásicos/química , Cinamatos/química , Curcumina/química , Precipitación Química , Cristalización , Modelos Moleculares , Difracción de Polvo , Solventes , Termodinámica , Difracción de Rayos X
12.
Int J Pharm ; 559: 245-254, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30699365

RESUMEN

The aim of this study was to evaluate the choice of polymer and polymer level on the performance of the microstructure and wettability of hot-melt extruded solid dispersion of Glyburide (Gly) as a model drug. The produced solid dispersion were characterised using scanning electron microscopy (SEM), image analysis using a focus variation instrument (FVI), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), X-ray microtomography (XµT), dynamic contact angle measurement and dissolution analysis using biorelevant dissolution media (FASSIF). SEM and focus variation analysis showed that the microstructure and surface morphology was significantly different between samples produced. This was confirmed by further analysis using XµT which showed that an increase in polymer content brought about a decrease in the porosity of the hot-melt extruded dispersions. DSC suggested complete amorphorisation of Gly whereas XRPD suggested incomplete amorphorisation. The static and dynamic contact angle measurement correlated with the dissolution studies using FASSIF media indicating that the initial liquid imbibition process as captured by the dynamic contact angle directly affects the dissolution performance.


Asunto(s)
Gliburida/química , Polímeros/química , Rastreo Diferencial de Calorimetría/métodos , Química Farmacéutica/métodos , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Congelación , Calor , Polietilenglicoles/química , Polivinilos/química , Polvos/química , Solubilidad , Humectabilidad , Difracción de Rayos X/métodos
13.
Expert Opin Drug Deliv ; 15(12): 1165-1173, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30411631

RESUMEN

OBJECTIVES: Hot melt extrusion is a continuous process with wide industrial applicability. Till current date, there have been no reports on the formulation of extrudates for topical treatment of dermatological diseases. METHODS: The aim of the present work was to prepare and characterize medicated hot melt extrudates based on Soluplus polymer and nicotinamide, and to explore their applicability in acne treatment. The extrudates were characterized using DSC, FTIR, XRD, and DVS. The extrudates were also tested for their skin adhesion potential, ability to deposit nicotinamide in different skin layers, and their clinical efficacy in acne patients. RESULTS: The 10% nicotinamide extrudates exhibited amorphous nature which was reserved during storage, with no chemical interaction between nicotinamide and Soluplus. Upon contrasting the skin adhesion and drug deposition of extrudates and nicotinamide gel, it was evident that the extrudates displayed significantly higher adhesion and drug deposition reaching 4.8 folds, 5.3 folds, and 4.3 folds more in the stratum corneum, epidermis and dermis, respectively. Furthermore, the extrudates significantly reduced the total number of acne lesions in patients by 61.3% compared to 42.14% with the nicotinamide gel. CONCLUSION: Soluplus extrudates are promising topical drug delivery means for the treatment of dermatological diseases.


Asunto(s)
Acné Vulgar/tratamiento farmacológico , Niacinamida/administración & dosificación , Polietilenglicoles/química , Polivinilos/química , Adhesivos , Adolescente , Adulto , Animales , Composición de Medicamentos/métodos , Femenino , Calor , Humanos , Masculino , Polímeros/química , Ratas , Solubilidad , Adulto Joven
14.
Int J Pharm ; 532(1): 603-611, 2017 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-28923766

RESUMEN

The aim of this study was to evaluate a novel combination of hydroxypropyl methylcellulose phthalate (HPMCP-HP-50) and Soluplus® polymers for enhanced physicochemical stability and solubility of the produced amorphous solid dispersions (ASDs). This was achieved using hot melt extrusion (HME) to convert the crystalline active pharmaceutical ingredient (API) into a more soluble amorphous form within the ternary systems. Itraconazole (ITZ), a Biopharmaceutics Classification System class II (BCS II) API, was selected as the model drug. The ASDs were characterized by Powder X-Ray diffraction (PXRD), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy, Solid State Nuclear Magnetic Resonance (ssNMR) and dissolution studies. The data showed that the ASDs were physically and chemically stable at 20°C and 50% RH over 12 months. PXRD results indicated that the ITZ in the ASDs was in the amorphous state and no recrystallization occurred. DSC scans confirmed that each formulation exhibited a single intermediate glass transition (Tg), around 96.4°C, indicating that ITZ was completely miscible in the polymeric blends of HPMCP and Soluplus® at up to 30% (w/w) drug loading and that the two polymers were miscible with each other in the presence of ITZ. The FTIR analysis indicated the formation of strong hydrogen bonding between ITZ, HPMCP and Soluplus®. The dissolution end-point of the ASDs was determined to be approximately 10 times greater than that of the crystalline ITZ.


Asunto(s)
Composición de Medicamentos , Itraconazol/química , Metilcelulosa/análogos & derivados , Polietilenglicoles/química , Polivinilos/química , Química Farmacéutica , Calor , Metilcelulosa/química , Solubilidad
15.
J Pharm Sci ; 106(8): 2009-2014, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28435141

RESUMEN

Polymorphism in active pharmaceutical ingredients can be regarded as critical for the potential that crystal form can have on the quality, efficacy, and safety of the final drug product. The current contribution aims to characterize thermodynamic interrelationship of a dimorphic co-crystal, FI and FII, involving carbamazepine (CBZ) and saccharin (SAC) molecules. Supramolecular synthesis of CBZ-SAC FI and FII has been performed using thermokinetic methods and systematically characterized by differential scanning calorimetry, powder X-ray diffraction, solubility, and slurry measurements. According to the heat of fusion rule by Burger and Ramberger, FI (ΔHfus = 121.1 J/g; melting point, 172.5°C) and FII (ΔHfus = 110.3 J/g; melting point, 164.7°C) are monotropically related. The solubility and van't Hoff plot results suggest FI stable and FII metastable forms. This study reveals that CBZ-SAC co-crystal phases, FI or FII, could be stable to heat-induced stresses; however, FII converts to FI during solution-mediated transformation.


Asunto(s)
Anticonvulsivantes/química , Carbamazepina/química , Sacarina/química , Edulcorantes/química , Rastreo Diferencial de Calorimetría , Cristalización , Solubilidad , Termodinámica , Difracción de Rayos X
16.
Langmuir ; 33(12): 2965-2976, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28267340

RESUMEN

Nanocrystalline hydroxyapatite (nanoHA) is the main hard component of bone and has the potential to be used to promote osseointegration of implants and to treat bone defects. Here, using active pharmaceutical ingredients (APIs) such as ibuprofen, we report on the prospects of combining nanoHA with biologically active compounds to improve the clinical performance of these treatments. In this study, we designed and investigated the possibility of API attachment to the surface of nanoHA crystals via the formation of a hydrogen-bonded complex. The mechanistic studies of an ibuprofen/nanoHA complex formation have been performed using a holistic approach encompassing spectroscopic (Fourier transform infrared (FTIR) and Raman) and X-ray diffraction techniques, as well as quantum chemistry calculations, while comparing the behavior of the ibuprofen/nanoHA complex with that of a physical mixture of the two components. Whereas ibuprofen exists in dimeric form both in solid and liquid state, our study showed that the formation of the ibuprofen/nanoHA complex most likely occurs via the dissociation of the ibuprofen dimer into monomeric species promoted by ethanol, with subsequent attachment of a monomer to the HA surface. An adsorption mode for this process is proposed; this includes hydrogen bonding of the hydroxyl group of ibuprofen to the hydroxyl group of the apatite, together with the interaction of the ibuprofen carbonyl group to an HA Ca center. Overall, this mechanistic study provides new insights into the molecular interactions between APIs and the surfaces of bioactive inorganic solids and sheds light on the relationship between the noncovalent bonding and drug release properties.

18.
J Pharm Sci ; 106(1): 66-70, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28029342

RESUMEN

A green approach has been used for co-crystallization of noncongruent co-crystal pair of caffeine/maleic acid using water. Ultrasound is known to affect crystallization; hence, the effect of high power ultrasound on the ternary phase diagram has been investigated in detail using a slurry co-crystallization approach. A systematic investigation was performed to understand how the accelerated conditions during ultrasound-assisted co-crystallization will affect different regions of the ternary phase diagram. Application of ultrasound showed considerable effect on the ternary phase diagram, principally on caffeine/maleic acid 2:1 (disappeared) and 1:1 co-crystal (narrowed) regions. Also, the stability regions for pure caffeine and maleic acid in water were narrowed in the presence of ultrasound, expanding the solution region. The observed effect of ultrasound on the phase diagram was correlated with solubility of caffeine and maleic acid and stability of co-crystal forms in water.


Asunto(s)
Cafeína/química , Cristalización/métodos , Maleatos/química , Sonicación/métodos , Cafeína/síntesis química , Tecnología Química Verde/métodos , Maleatos/síntesis química , Transición de Fase , Solubilidad , Agua/química
19.
J Pharm Biomed Anal ; 129: 172-181, 2016 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27429366

RESUMEN

The use of near infra red spectroscopy to predict the concentration of two pharmaceutical co-crystals; 1:1 ibuprofen-nicotinamide (IBU-NIC) and 1:1 carbamazepine-nicotinamide (CBZ-NIC) has been evaluated. A partial least squares (PLS) regression model was developed for both co-crystal pairs using sets of standard samples to create calibration and validation data sets with which to build and validate the models. Parameters such as the root mean square error of calibration (RMSEC), root mean square error of prediction (RMSEP) and correlation coefficient were used to assess the accuracy and linearity of the models. Accurate PLS regression models were created for both co-crystal pairs which can be used to predict the co-crystal concentration in a powder mixture of the co-crystal and the active pharmaceutical ingredient (API). The IBU-NIC model had smaller errors than the CBZ-NIC model, possibly due to the complex CBZ-NIC spectra which could reflect the different arrangement of hydrogen bonding associated with the co-crystal compared to the IBU-NIC co-crystal. These results suggest that NIR spectroscopy can be used as a PAT tool during a variety of pharmaceutical co-crystal manufacturing methods and the presented data will facilitate future offline and in-line NIR studies involving pharmaceutical co-crystals.


Asunto(s)
Química Farmacéutica/métodos , Preparaciones Farmacéuticas/química , Espectroscopía Infrarroja Corta/métodos , Calibración , Carbamazepina/química , Ibuprofeno/química , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Niacinamida/química , Polvos/química
20.
Drug Dev Ind Pharm ; 42(10): 1553-63, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26858024

RESUMEN

CONTEXT: Most of the active pharmaceutical ingredients (APIs) suffer from a drawback of poor aqueous solubility. In addition to the same, some APIs show poor tabletting behavior creating problems in formulation development. Crystal engineering can be an efficient tool in rectification of such problems associated with the APIs. Thus present work deals with crystallization of ibuprofen (a model drug) onto the surface of dicalcium phosphate (DCP) particles using different techniques. OBJECTIVE: The objective of the present work was to prepare ibuprofen-loaded DCP particles and further to analyze them for compressibility and dissolution behavior. MATERIALS AND METHODS: Various crystallization techniques such as solvent evaporation (SE), melt crystallization (MC), melt sonocrystallization (MSC), antisolvent crystallization (AC), and antisolvent sonocrystallization (ASC) were screened for the preparation of ibuprofen-loaded DCP. Products obtained from different techniques were analyzed for physicochemical, micromeritic and compression properties. RESULTS AND DISCUSSION: ASC technique was found to be suitable for preparing directly compressible ibuprofen-loaded DCP particles. The change in the crystal habit (needle to plate shape) of ibuprofen and its crystallization in miniscular form onto the surface of DCP particles showed significant improvement in the dissolution rate and compression properties of ibuprofen due to an increase in specific surface area when compared with ibuprofen crystallized by other techniques. Additionally, the tablets prepared from ASC powder did not require binder since ibuprofen acted as melt binder during compression. CONCLUSION: Directly compressible ibuprofen-loaded DCP particles can serve as an alternative for conventional ibuprofen tablets prepared by wet granulation technique.


Asunto(s)
Excipientes/química , Ibuprofeno/química , Comprimidos/química , Ultrasonografía Intervencional/métodos , Cristalización , Ibuprofeno/síntesis química , Solubilidad , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...