Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37512249

RESUMEN

The unavailability of biodegradable preservatives is one of the major setbacks in the construction industry. With this in mind, our study focused on the analysis and comparison of two hydrophobic liquids, one vegetable oil-based (VOA) and the other mineral oil-based (MOA), and subsequently applying the same on three types of wood. The comparison of the vegetable oil-based (VOA) and mineral oil-based (MOA) hydrophobic liquids revealed that VOA was characterized by an 83.4% susceptibility to aerobic biodegradation, while MOA was considerably more resistant (47.80%). Based on the conducted contact angle measurements, it was observed that the wettability of pine and oak wood decreased after the application of both VOA (for pine-twice; for oak-by 38%) and MOA (for pine-more than two times; for oak-by 49%), while in the case of aspen, the same was increased (after the application of VOA-by 20%; after the application of MOA-by 2%). The observed depth of penetration into the structure of the impregnated wood was lower for the VOA impregnant as compared to the MOA impregnant. This result persisted in all types of wood used in the experiment. Observations of the process of water absorption during soaking revealed that VOA was more beneficial in terms of lowering water absorption into the material, regardless of wood type. The overall results were better for VOA, which lowered the mass of soaked wood by between 19.73 and 66.90%.

2.
Materials (Basel) ; 15(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36500048

RESUMEN

This study focuses on the assessment of possible hypereutectoid steel carbide mesh crushing. It is used for tools production, including forming rolls of various diameters, with modification and cyclic heat treatment methods. For steel containing 1.79-1.83% C, we studied the effect of 0.35-1.15% Si on the possible crushing of the cementite mesh within crystallization by introducing modifiers Ti, V, N, as well as simultaneously modifying V with N and Ti with N. The obtained castings of Ø200 mm, 400 mm high were cut into discs, from which we made samples for tests on wear, determining mechanical properties, thermal resistance, and susceptibility to brittle fracture. The assessment was performed in the as-cast and after double and triple normalizing and annealing with drawback. With additional fans blowing, we changed the cooling rate from 25 °C/h to 100-150 °C/h. We performed the microstructure analyses using traditional metallographic, micro-X-ray spectral analyses, and also used the segmentation process based on 2D image markers. It was found that the as-cast modifying additives infusion is insufficient for carbide mesh crushing. It can be made by multi-stage normalizing with accelerated cool-down for products up to 600 mm in diameter to cycle temperatures above the steel transfer from a plastic to elastic state (above 450 °C).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA