Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34960501

RESUMEN

Heart rate (HR) and heart rate variability (HRV) based physiological metrics such as Excess Post-exercise Oxygen Consumption (EPOC), Energy Expenditure (EE), and Training Impulse (TRIMP) are widely utilized in coaching to monitor and optimize an athlete's training load. Chest straps, and recently also dry electrodes integrated to special sports vests, are used to monitor HR during sports. Mechanical design, placement of electrodes, and ergonomics of the sensor affect the measured signal quality and artefacts. To evaluate the impact of the sensor mechanical design on the accuracy of the HR/HRV and further on to estimation of EPOC, EE, and TRIMP, we recorded HR and HRV from a chest strap and a vest with the same ECG sensor during supervised exercise protocol. A 3-lead clinical Holter ECG was used as a reference. Twenty-five healthy subjects (six females) participated. Mean absolute percentage error (MAPE) for HR was 0.76% with chest strap and 3.32% with vest. MAPE was 1.70% vs. 6.73% for EE, 0.38% vs. 8.99% for TRIMP and 3.90% vs. 54.15% for EPOC with chest strap and vest, respectively. Results suggest superior accuracy of chest strap over vest for HR and physiological metrics monitoring during sports.


Asunto(s)
Ejercicio Físico , Consumo de Oxígeno , Electrocardiografía Ambulatoria , Metabolismo Energético , Femenino , Frecuencia Cardíaca , Humanos
2.
Artículo en Inglés | MEDLINE | ID: mdl-30440305

RESUMEN

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Although not life-threatening itself, AF significantly increases the risk of stroke and myocardial infarction. Current tools available for screening and monitoring of AF are inadequate and an unobtrusive alternative, suitable for long-term use, is needed. This paper evaluates an atrial fibrillation detection algorithm based on wrist photoplethysmographic (PPG) signals. 29 patients recovering from surgery in the post-anesthesia care unit were monitored. 15 patients had sinus rhythm (SR, 67.5± 10.7 years old, 7 female) and 14 patients had AF (74.8± 8.3 years old, 8 female) during the recordings. Inter-beat intervals (IBI) were estimated from PPG signals. As IBI estimation is highly sensitive to motion or other types of noise, acceleration signals and PPG waveforms were used to automatically detect and discard unreliable IBI. AF was detected from windows of 20 consecutive IBI with 98.45±6.89% sensitivity and 99.13±1.79% specificity for 76.34±19.54% of the time. For the remaining time, no decision was taken due to the lack of reliable IBI. The results show that wrist PPG is suitable for long term monitoring and AF screening. In addition, this technique provides a more comfortable alternative to ECG devices.


Asunto(s)
Fibrilación Atrial/fisiopatología , Anciano , Anciano de 80 o más Años , Algoritmos , Fibrilación Atrial/diagnóstico , Electrocardiografía/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fotopletismografía/métodos , Periodo Posoperatorio , Muñeca/fisiopatología
3.
Physiol Meas ; 39(6): 065007, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29856730

RESUMEN

OBJECTIVE: Atrial fibrillation (AF) causes marked risk for patients, while silent fibrillation may remain unnoticed if not suspected and screened. Development of comfortable yet accurate beat-to-beat heart rate (HR) monitoring with good AF detection sensitivity would facilitate screening and improve treatment. The purpose of this study was to evaluate whether a wrist-worn photoplethysmography (PPG) device can be used to monitor beat-to-beat HR accurately during post-operative treatment in patients suffering from AF and whether wrist-PPG can be used to distinguish AF from sinus rhythm (SR). APPROACH: Twenty-nine patients (14 with AF, 15 with SR, mean age 71.5 years) with multiple comorbidities were monitored during routine post-operative treatment. The monitoring included standard ECG, finger PPG monitoring and a wrist-worn PPG monitor with green and infrared light sources. The HR from PPG sensors was compared against ECG-derived HR. MAIN RESULTS: The wrist PPG technology had very good HR and beat detection accuracy when using green light. For the SR group, the mean absolute error (MAE) for HR was 1.50 bpm, and for the inter-beat intervals (IBI), the MAE was 7.64 ms. For the AF group, the MAE for HR was 4.28 bpm and for IBI, the MAE was 14.67 ms. Accuracy for the infrared (IR) channel was worse. Finger PPG provided similar accuracy for HR and better accuracy for the IBI. AF detection sensitivity using green light was 99.0% and the specificity was 93.0%. Performance can be improved by discarding unreliable IBI periods. SIGNIFICANCE: Results suggest that wrist PPG measurement allows accurate HR and beat-to-beat HR monitoring also in AF patients, and could be used for differentiating between SR and AF with very good sensitivity.


Asunto(s)
Fibrilación Atrial/diagnóstico , Fibrilación Atrial/fisiopatología , Determinación de la Frecuencia Cardíaca/métodos , Pletismografía/métodos , Muñeca , Anciano , Femenino , Humanos , Masculino , Procesamiento de Señales Asistido por Computador
4.
JMIR Mhealth Uhealth ; 5(7): e97, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28743682

RESUMEN

BACKGROUND: Wearable sensors enable long-term monitoring of health and wellbeing indicators. An objective evaluation of sensors' accuracy is important, especially for their use in health care. OBJECTIVE: The aim of this study was to use a wrist-worn optical heart rate (OHR) device to estimate heart rate (HR), energy expenditure (EE), and maximal oxygen intake capacity (VO2Max) during running and to evaluate the accuracy of the estimated parameters (HR, EE, and VO2Max) against golden reference methods. METHODS: A total of 24 healthy volunteers, of whom 11 were female, with a mean age of 36.2 years (SD 8.2 years) participated in a submaximal self-paced outdoor running test and maximal voluntary exercise test in a sports laboratory. OHR was monitored with a PulseOn wrist-worn photoplethysmographic device and the running speed with a phone GPS sensor. A physiological model based on HR, running speed, and personal characteristics (age, gender, weight, and height) was used to estimate EE during the maximal voluntary exercise test and VO2Max during the submaximal outdoor running test. ECG-based HR and respiratory gas analysis based estimates were used as golden references. RESULTS: OHR was able to measure HR during running with a 1.9% mean absolute percentage error (MAPE). VO2Max estimated during the submaximal outdoor running test was closely similar to the sports laboratory estimate (MAPE 5.2%). The energy expenditure estimate (n=23) was quite accurate when HR was above the aerobic threshold (MAPE 6.7%), but MAPE increased to 16.5% during a lighter intensity of exercise. CONCLUSIONS: The results suggest that wrist-worn OHR may accurately estimate HR during running up to maximal HR. When combined with physiological modeling, wrist-worn OHR may be used for an estimation of EE, especially during higher intensity running, and VO2Max, even during submaximal self-paced outdoor recreational running.

5.
IEEE J Biomed Health Inform ; 20(6): 1632-1639, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26292351

RESUMEN

Novel health monitoring devices and applications allow consumers easy and ubiquitous ways to monitor their health status. However, technologies from different providers lack both technical and semantic interoperability and hence the resulting health data are often deeply tied to a specific service, which is limiting its reusability and utilization in different services. We have designed a Wellness Warehouse Engine (W2E) that bridges this gap and enables seamless exchange of data between different services. W2E provides interfaces to various data sources and makes data available via unified representational state transfer application programming interface to other services. Importantly, it includes Unifier--an engine that allows transforming input data into generic units reusable by other services, and Analyzer--an engine that allows advanced analysis of input data, such as combining different data sources into new output parameters. In this paper, we describe the architecture of W2E and demonstrate its applicability by using it for unifying data from four consumer activity trackers, using a test base of 20 subjects each carrying out three different tracking sessions. Finally, we discuss challenges of building a scalable Unifier engine for the ever-enlarging number of new devices.


Asunto(s)
Bases de Datos Factuales , Monitores de Ejercicio , Almacenamiento y Recuperación de la Información/métodos , Semántica , Adulto , Algoritmos , Femenino , Humanos , Masculino , Adulto Joven
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 186-189, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28268310

RESUMEN

Heart rate (HR) and HR variability (HRV) carry rich information about physical activity, mental and physical load, physiological status, and health of an individual. When combined with activity monitoring and personalized physiological modelling, HR/HRV monitoring may be used for monitoring of complex behaviors and impact of behaviors and external factors on the current physiological status of an individual. Optical HR monitoring (OHR) from wrist provides a comfortable and unobtrusive method for HR/HRV monitoring and is better adhered by users than traditional ECG electrodes or chest straps. However, OHR power consumption is significantly higher than that for ECG based methods due to the measurement principle based on optical illumination of the tissue. We developed an algorithmic approach to reduce power consumption of the OHR in 24/7 HR trending. We use continuous activity monitoring and a fast converging frequency domain algorithm to derive a reliable HR estimate in 7.1s (during outdoor sports, in average) to 10.0s (during daily life). The method allows >80% reduction in power consumption in 24/7 OHR monitoring when average HR monitoring is targeted, without significant reduction in tracking accuracy.


Asunto(s)
Algoritmos , Frecuencia Cardíaca/fisiología , Monitoreo Fisiológico/métodos , Actividades Cotidianas , Adulto , Diseño de Equipo , Ejercicio Físico , Femenino , Humanos , Masculino , Monitoreo Fisiológico/instrumentación , Reproducibilidad de los Resultados , Sueño , Deportes
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 8099-102, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26738173

RESUMEN

Heart rate variability (HRV) provides significant information about the health status of an individual. Optical heart rate monitoring is a comfortable alternative to ECG based heart rate monitoring. However, most available optical heart rate monitoring devices do not supply beat-to-beat detection accuracy required by proper HRV analysis. We evaluate the beat-to-beat detection accuracy of a recent wrist-worn optical heart rate monitoring device, PulseOn (PO). Ten subjects (8 male and 2 female; 35.9±10.3 years old) participated in the study. HRV was recorded with PO and Firstbeat Bodyguard 2 (BG2) device, which was used as an ECG based reference. HRV was recorded during sleep. As compared to BG2, PO detected on average 99.57% of the heartbeats (0.43% of beats missed) and had 0.72% extra beat detection rate, with 5.94 ms mean absolute error (MAE) in beat-to-beat intervals (RRI) as compared to the ECG based RRI BG2. Mean RMSSD difference between PO and BG2 derived HRV was 3.1 ms. Therefore, PO provides an accurate method for long term HRV monitoring during sleep.


Asunto(s)
Frecuencia Cardíaca , Adulto , Electrocardiografía , Femenino , Humanos , Masculino , Monitoreo Fisiológico , Muñeca
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 430-3, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26736291

RESUMEN

PulseOn is a wrist-worn optical heart rate (HR) monitor based on photoplethysmography. It utilizes multi-wavelength technology and optimized sensor geometry to monitor blood flow at different depths of skin tissue, and it dynamically adapts to an optimal measurement depth in different conditions. Movement artefacts are reduced by adaptive movement-cancellation algorithms and optimized mechanics, which stabilize the sensor-to-skin contact. In this paper, we evaluated the accuracy and reliability of PulseOn technology against ECG-derived HR in laboratory conditions during a wide range of physical activities and also during outdoor sports. In addition, we compared the performance to another on-the-shelf wrist-worn consumer product Mio LINK(®). The results showed PulseOn reliability (% of time with error <;10bpm) of 94.5% with accuracy (100% - mean absolute percentage error) 96.6% as compared to ECG (vs 86.6% and 94.4% for Mio LINK(®), correspondingly) during laboratory protocol. Similar or better reliability and accuracy was seen during normal outdoor sports activities. The results show that PulseOn provides reliability and accuracy similar to traditional chest strap ECG HR monitors during cardiovascular exercise.


Asunto(s)
Frecuencia Cardíaca , Algoritmos , Monitoreo Fisiológico , Fotopletismografía , Reproducibilidad de los Resultados
9.
Artículo en Inglés | MEDLINE | ID: mdl-25570787

RESUMEN

Wearable monitoring of heart rate (HR) during physical activity and exercising allows real time control of exercise intensity and training effect. Recently, technologies based on pulse plethysmography (PPG) have become available for personal health management for consumers. However, the accuracy of these monitors is poorly known which limits their application. In this study, we evaluated accuracy of two PPG based (wrist i.e. Mio Alpha vs forearm i.e. Schosche Rhythm) commercially available HR monitors during exercise. 21 healthy volunteers (15 male and 6 female) completed an exercise protocol which included sitting, lying, walking, running, cycling, and some daily activities involving hand movements. HR estimation was compared against values from the reference electrocardiogram (ECG) signal. The heart rate estimation reliability scores for <;5% accuracy against reference were following: mio Alpha 77,83% and Scosche Rhytm 76,29%. The estimated results indicate that performance of devices depends on various parameters, including specified activity, sensor type and device placement.


Asunto(s)
Frecuencia Cardíaca/fisiología , Fotopletismografía , Adulto , Electrocardiografía , Prueba de Esfuerzo , Femenino , Voluntarios Sanos , Humanos , Masculino , Monitoreo Fisiológico , Carrera , Caminata , Muñeca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA