Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645179

RESUMEN

Human cytomegalovirus (HCMV) infects up to 80% of the worlds population. Here, we show that HCMV infection leads to widespread changes in human chromatin accessibility and chromatin looping, with hundreds of thousands of genomic regions affected 48 hours after infection. Integrative analyses reveal HCMV-induced perturbation of Hippo signaling through drastic reduction of TEAD1 transcription factor activity. We confirm extensive concordant loss of TEAD1 binding, active H3K27ac histone marks, and chromatin looping interactions upon infection. Our data position TEAD1 at the top of a hierarchy involving multiple altered important developmental pathways. HCMV infection reduces TEAD1 activity through four distinct mechanisms: closing of TEAD1-bound chromatin, reduction of YAP1 and phosphorylated YAP1 levels, reduction of TEAD1 transcript and protein levels, and alteration of TEAD1 exon-6 usage. Altered TEAD1-based mechanisms are highly enriched at genetic risk loci associated with eye and ear development, providing mechanistic insight into HCMVs established roles in these processes.

2.
BMC Genomics ; 25(1): 273, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475709

RESUMEN

BACKGROUND: There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS: In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS: This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Genoma Humano , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Proteínas Virales/genética , Factores de Transcripción/metabolismo
3.
bioRxiv ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38405748

RESUMEN

Inflammatory Bowel Disease ( IBD ) is a chronic and often debilitating autoinflammatory condition, with an increasing incidence in children. Standard-of-care therapies lead to sustained transmural healing and clinical remission in fewer than one-third of patients. For children, TNFα inhibition remains the only FDA-approved biologic therapy, providing an even greater urgency to understanding mechanisms of response. Genome-wide association studies ( GWAS ) have identified 418 independent genetic risk loci contributing to IBD, yet the majority are noncoding and their mechanisms of action are difficult to decipher. If causal, they likely alter transcription factor ( TF ) binding and downstream gene expression in particular cell types and contexts. To bridge this knowledge gap, we built a novel resource: multiome-seq (tandem single-nuclei ( sn )RNA-seq and chromatin accessibility ( snATAC )-seq) of intestinal tissue from pediatric IBD patients, where anti-TNF response was defined by endoscopic healing. From the snATAC-seq data, we generated a first-time atlas of chromatin accessibility (putative regulatory elements) for diverse intestinal cell types in the context of IBD. For cell types/contexts mediating genetic risk, we reasoned that accessible chromatin will co-localize with genetic disease risk loci. We systematically tested for significant co-localization of our chromatin accessibility maps and risk variants for 758 GWAS traits. Globally, genetic risk variants for IBD, autoimmune and inflammatory diseases are enriched in accessible chromatin of immune populations, while other traits (e.g., colorectal cancer, metabolic) are enriched in epithelial and stromal populations. This resource opens new avenues to uncover the complex molecular and cellular mechanisms mediating genetic disease risk.

4.
Am J Hum Genet ; 111(2): 280-294, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38183988

RESUMEN

Eosinophilic esophagitis (EoE) is a rare atopic disorder associated with esophageal dysfunction, including difficulty swallowing, food impaction, and inflammation, that develops in a small subset of people with food allergies. Genome-wide association studies (GWASs) have identified 9 independent EoE risk loci reaching genome-wide significance (p < 5 × 10-8) and 27 additional loci of suggestive significance (5 × 10-8 < p < 1 × 10-5). In the current study, we perform linkage disequilibrium (LD) expansion of these loci to nominate a set of 531 variants that are potentially causal. To systematically interrogate the gene regulatory activity of these variants, we designed a massively parallel reporter assay (MPRA) containing the alleles of each variant within their genomic sequence context cloned into a GFP reporter library. Analysis of reporter gene expression in TE-7, HaCaT, and Jurkat cells revealed cell-type-specific gene regulation. We identify 32 allelic enhancer variants, representing 6 genome-wide significant EoE loci and 7 suggestive EoE loci, that regulate reporter gene expression in a genotype-dependent manner in at least one cellular context. By annotating these variants with expression quantitative trait loci (eQTL) and chromatin looping data in related tissues and cell types, we identify putative target genes affected by genetic variation in individuals with EoE. Transcription factor enrichment analyses reveal possible roles for cell-type-specific regulators, including GATA3. Our approach reduces the large set of EoE-associated variants to a set of 32 with allelic regulatory activity, providing functional insights into the effects of genetic variation in this disease.


Asunto(s)
Enteritis , Eosinofilia , Esofagitis Eosinofílica , Gastritis , Humanos , Esofagitis Eosinofílica/genética , Esofagitis Eosinofílica/complicaciones , Estudio de Asociación del Genoma Completo , Genotipo , Sitios de Carácter Cuantitativo/genética
5.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045385

RESUMEN

The conserved Runt-related (RUNX) transcription factor family are well-known master regulators of developmental and regenerative processes. Runx1 and Runx2 are both expressed in satellite cells (SC) and skeletal myotubes. Conditional deletion of Runx1 in adult SC negatively impacted self-renewal and impaired skeletal muscle maintenance. Runx1- deficient SC retain Runx2 expression but cannot support muscle regeneration in response to injury. To determine the unique molecular functions of Runx1 that cannot be compensated by Runx2 we deleted Runx1 in C2C12 that retain Runx2 expression and established that myoblasts differentiation was blocked in vitro due in part to ectopic expression of Mef2c, a target repressed by Runx1 . Structure-function analysis demonstrated that the Ets-interacting MID/EID region of Runx1, absent from Runx2, is critical to regulating myoblasts proliferation, differentiation, and fusion. Analysis of in-house and published ChIP-seq datasets from Runx1 (T-cells, muscle) versus Runx2 (preosteoblasts) dependent tissue identified enrichment for a Ets:Runx composite site in Runx1 -dependent tissues. Comparing ATACseq datasets from WT and Runx1KO C2C12 cells showed that the Ets:Runx composite motif was enriched in peaks open exclusively in WT cells compared to peaks unique to Runx1KO cells. Thus, engagement of a set of targets by the RUNX1/ETS complex define the non-redundant functions of Runx1 .

6.
bioRxiv ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37662191

RESUMEN

Multinucleated skeletal muscle cells have an obligatory need to acquire additional nuclei through fusion with activated skeletal muscle stem cells when responding to both developmental and adaptive growth stimuli. A fundamental question in skeletal muscle biology has been the reason underlying this need for new nuclei in syncytial cells that already harbor hundreds of nuclei. To begin to answer this long-standing question, we utilized nuclear RNA-sequencing approaches and developed a lineage tracing strategy capable of defining the transcriptional state of recently fused nuclei and distinguishing this state from that of pre-existing nuclei. Our findings reveal the presence of conserved markers of newly fused nuclei both during development and after a hypertrophic stimulus in the adult. However, newly fused nuclei also exhibit divergent gene expression that is determined by the myogenic environment to which they fuse. Moreover, accrual of new nuclei through fusion is required for nuclei already resident in adult myofibers to mount a normal transcriptional response to a load-inducing stimulus. We propose a model of mutual regulation in the control of skeletal muscle development and adaptations, where newly fused and pre-existing myonuclear populations influence each other to maintain optimal functional growth.

7.
medRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745430

RESUMEN

There are many well-established relationships between pathogens and human disease, but far fewer when focusing on non-communicable diseases (NCDs). We leverage data from The UK Biobank and TriNetX to perform a systematic survey across 20 pathogens and 426 diseases, focused primarily on NCDs. To this end, we assess the association between disease status and infection history proxies. We identify 206 pathogen-disease pairs that replicate in both cohorts. We replicate many established relationships, including Helicobacter pylori with several gastroenterological diseases, and connections between Epstein-Barr virus with multiple sclerosis and lupus. Overall, our approach identified evidence of association for 15 of the pathogens and 96 distinct diseases, including a currently controversial link between human cytomegalovirus (CMV) and ulcerative colitis (UC). We validate this connection through two orthogonal analyses, revealing increased CMV gene expression in UC patients and enrichment for UC genetic risk signal near human genes that have altered expression upon CMV infection. Collectively, these results form a foundation for future investigations into mechanistic roles played by pathogens in disease.

8.
PLoS Comput Biol ; 19(1): e1010863, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719906

RESUMEN

Transcription factors read the genome, fundamentally connecting DNA sequence to gene expression across diverse cell types. Determining how, where, and when TFs bind chromatin will advance our understanding of gene regulatory networks and cellular behavior. The 2017 ENCODE-DREAM in vivo Transcription-Factor Binding Site (TFBS) Prediction Challenge highlighted the value of chromatin accessibility data to TFBS prediction, establishing state-of-the-art methods for TFBS prediction from DNase-seq. However, the more recent Assay-for-Transposase-Accessible-Chromatin (ATAC)-seq has surpassed DNase-seq as the most widely-used chromatin accessibility profiling method. Furthermore, ATAC-seq is the only such technique available at single-cell resolution from standard commercial platforms. While ATAC-seq datasets grow exponentially, suboptimal motif scanning is unfortunately the most common method for TFBS prediction from ATAC-seq. To enable community access to state-of-the-art TFBS prediction from ATAC-seq, we (1) curated an extensive benchmark dataset (127 TFs) for ATAC-seq model training and (2) built "maxATAC", a suite of user-friendly, deep neural network models for genome-wide TFBS prediction from ATAC-seq in any cell type. With models available for 127 human TFs, maxATAC is the largest collection of high-performance TFBS prediction models for ATAC-seq. maxATAC performance extends to primary cells and single-cell ATAC-seq, enabling improved TFBS prediction in vivo. We demonstrate maxATAC's capabilities by identifying TFBS associated with allele-dependent chromatin accessibility at atopic dermatitis genetic risk loci.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Red Nerviosa , Humanos , Cromatina/genética , Desoxirribonucleasas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos
9.
Res Sq ; 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38168374

RESUMEN

Background: Previous studies have identified TET1 as a potential key regulator of genes linked to asthma. TET1 has been shown to transcriptionally respond to house dust mite extract, an allergen known to directly cause allergic asthma development, and regulate the expression of genes involved in asthma. How TET1 regulates expression of these genes, however, is unknown. TET1 is a DNA demethylase; therefore, most prior research on TET1-based gene regulation has focused on how TET1 affects methylation. However, TET1 can also interact directly with transcription factors and histone modifiers to regulate gene expression. Understanding how TET1 regulates expression to contribute to allergic responses and asthma development thus requires a comprehensive approach. To this end, we measured mRNA expression, DNA methylation, chromatin accessibility and histone modifications in control and TET1 knockdown human bronchial epithelial cells treated or untreated with house dust mite extract. Results: Throughout our analyses, we detected strong similarities between the effects of TET1 knockdown alone and the effects of HDM treatment alone. One especially striking pattern was that both TET1 knockdown and HDM treatment generally led to decreased chromatin accessibility at largely the same genomic loci. Transcription factor enrichment analyses indicated that altered chromatin accessibility following the loss of TET1 may affect, or be affected by, CTCF and CEBP binding. TET1 loss also led to changes in DNA methylation, but these changes were generally in regions where accessibility was not changing. Conclusions: TET1 regulates gene expression through different mechanisms (DNA methylation and chromatin accessibility) in different parts of the genome in the airway epithelial cells, which mediates inflammatory responses to allergen. Collectively, our data suggest novel molecular mechanisms through which TET1 regulates critical pathways following allergen challenges and contributes to the development of asthma.

10.
Hepatol Commun ; 6(10): 2950-2963, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36000549

RESUMEN

Fibrolamellar hepatocellular carcinoma (FLC) is a disease that occurs in children and young adults. The development of FLC is associated with creation of a fusion oncoprotein DNAJB1-PKAc kinase, which activates multiple cancer-associated pathways. The aim of this study was to examine the role of human genomic regions, called cancer-enhancing genomic regions or aggressive liver cancer domains (CEGRs/ALCDs), in the development of FLC. Previous studies revealed that CEGRs/ALCDs are located in multiple oncogenes and cancer-associated genes, regularly silenced in normal tissues. Using the regulatory element locus intersection (RELI) algorithm, we searched a large compendium of chromatin immunoprecipitation-sequencing (ChIP) data sets and found that CEGRs/ALCDs contain regulatory elements in several human cancers outside of pediatric hepatic neoplasms. The RELI algorithm further identified components of the ß-catenin-TCF7L2/TCF4 pathway, which interacts with CEGRs/ALCDs in several human cancers. Particularly, the RELI algorithm found interactions of transcription factors and chromatin remodelers with many genes that are activated in patients with FLC. We found that these FLC-specific genes contain CEGRs/ALCDs, and that the driver of FLC, fusion oncoprotein DNAJB1-PKAc, phosphorylates ß-catenin at Ser675, resulting in an increase of ß-catenin-TCF7L2/TCF4 complexes. These complexes increase a large family of CEGR/ALCD-dependent collagens and oncogenes. The DNAJB1-PKAc-ß-catenin-CEGR/ALCD pathway is preserved in lung metastasis. The inhibition of ß-catenin in FLC organoids inhibited the expression of CEGRs/ALCDs-dependent collagens and oncogenes, preventing the formation of the organoid's structure. Conclusion: This study provides a rationale for the development of ß-catenin-based therapy for patients with FLC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , beta Catenina/metabolismo , Carcinoma Hepatocelular/genética , Cromatina , Regulación Neoplásica de la Expresión Génica/genética , Genoma Humano , Genómica , Proteínas del Choque Térmico HSP40/genética , Humanos , Neoplasias Hepáticas/genética , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción/genética , beta Catenina/genética
11.
PLoS Genet ; 18(5): e1009973, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35576187

RESUMEN

Atopic dermatitis (AD) is one of the most common skin disorders among children. Disease etiology involves genetic and environmental factors, with 29 independent AD risk loci enriched for risk allele-dependent gene expression in the skin and CD4+ T cell compartments. We investigated the potential epigenetic mechanisms responsible for the genetic susceptibility of CD4+ T cells. To understand the differences in gene regulatory activity in peripheral blood T cells in AD, we measured chromatin accessibility (an assay based on transposase-accessible chromatin sequencing, ATAC-seq), nuclear factor kappa B subunit 1 (NFKB1) binding (chromatin immunoprecipitation with sequencing, ChIP-seq), and gene expression levels (RNA-seq) in stimulated CD4+ T cells from subjects with active moderate-to-severe AD, as well as in age-matched non-allergic controls. Open chromatin regions in stimulated CD4+ T cells were highly enriched for AD genetic risk variants, with almost half of the AD risk loci overlapping AD-dependent ATAC-seq peaks. AD-specific open chromatin regions were strongly enriched for NF-κB DNA-binding motifs. ChIP-seq identified hundreds of NFKB1-occupied genomic loci that were AD- or control-specific. As expected, the AD-specific ChIP-seq peaks were strongly enriched for NF-κB DNA-binding motifs. Surprisingly, control-specific NFKB1 ChIP-seq peaks were not enriched for NFKB1 motifs, but instead contained motifs for other classes of human transcription factors, suggesting a mechanism involving altered indirect NFKB1 binding. Using DNA sequencing data, we identified 63 instances of altered genotype-dependent chromatin accessibility at 36 AD risk variant loci (30% of AD risk loci) that might lead to genotype-dependent gene expression. Based on these findings, we propose that CD4+ T cells respond to stimulation in an AD-specific manner, resulting in disease- and genotype-dependent chromatin accessibility alterations involving NFKB1 binding.


Asunto(s)
Linfocitos T CD4-Positivos , Dermatitis Atópica , Linfocitos T CD4-Positivos/metabolismo , Niño , Cromatina/genética , ADN , Dermatitis Atópica/genética , Epigénesis Genética , Humanos , FN-kappa B/metabolismo
12.
Cell Genom ; 2(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35252945

RESUMEN

Non-coding DNA variants (NCVs) impact gene expression by altering binding sites for regulatory complexes. New high-throughput methods are needed to characterize the impact of NCVs on regulatory complexes. We developed CASCADE (Customizable Approach to Survey Complex Assembly at DNA Elements), an array-based high-throughput method to profile cofactor (COF) recruitment. CASCADE identifies DNA-bound transcription factor-cofactor (TF-COF) complexes in nuclear extracts and quantifies the impact of NCVs on their binding. We demonstrate CASCADE sensitivity in characterizing condition-specific recruitment of COFs p300 and RBBP5 (MLL subunit) to the CXCL10 promoter in lipopolysaccharide (LPS)-stimulated human macrophages and quantify the impact of all possible NCVs. To demonstrate applicability to NCV screens, we profile TF-COF binding to ~1,700 single-nucleotide polymorphism quantitative trait loci (SNP-QTLs) in human macrophages and identify perturbed ETS domain-containing complexes. CASCADE will facilitate high-throughput testing of molecular mechanisms of NCVs for diverse biological applications.

13.
Genome Res ; 31(12): 2185-2198, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34799401

RESUMEN

The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1 Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.

14.
Front Immunol ; 12: 701924, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421907

RESUMEN

Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/inmunología , Linfocitos T/inmunología , Timo/inmunología , Animales , Humanos , Inmunidad/inmunología , Memoria Inmunológica/inmunología , Inflamación/inmunología
15.
J Immunol ; 207(4): 1044-1054, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34330753

RESUMEN

Eosinophils develop in the bone marrow from hematopoietic progenitors into mature cells capable of a plethora of immunomodulatory roles via the choreographed process of eosinophilopoiesis. However, the gene regulatory elements and transcription factors (TFs) orchestrating this process remain largely unknown. The potency and resulting diversity fundamental to an eosinophil's complex immunomodulatory functions and tissue specialization likely result from dynamic epigenetic regulation of the eosinophil genome, a dynamic eosinophil regulome. In this study, we applied a global approach using broad-range, next-generation sequencing to identify a repertoire of eosinophil-specific enhancers. We identified over 8200 active enhancers located within 1-20 kB of expressed eosinophil genes. TF binding motif analysis revealed PU.1 (Spi1) motif enrichment in eosinophil enhancers, and chromatin immunoprecipitation coupled with massively parallel sequencing confirmed PU.1 binding in likely enhancers of genes highly expressed in eosinophils. A substantial proportion (>25%) of these PU.1-bound enhancers were unique to murine, culture-derived eosinophils when compared among enhancers of highly expressed genes of three closely related myeloid cell subsets (macrophages, neutrophils, and immature granulocytes). Gene ontology analysis of eosinophil-specific, PU.1-bound enhancers revealed enrichment for genes involved in migration, proliferation, degranulation, and survival. Furthermore, eosinophil-specific superenhancers were enriched in genes whose homologs are associated with risk loci for eosinophilia and allergic diseases. Our collective data identify eosinophil-specific enhancers regulating key eosinophil genes through epigenetic mechanisms (H3K27 acetylation) and TF binding (PU.1).


Asunto(s)
Cromatina/genética , Eosinófilos/metabolismo , Epigénesis Genética/genética , Unión Proteica/genética , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Animales , Células Cultivadas , Ratones , Ratones Endogámicos BALB C , Células Mieloides , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética
16.
PLoS Genet ; 17(6): e1009574, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34111109

RESUMEN

Runt-related transcription factor 1 (Runx1) can act as both an activator and a repressor. Here we show that CRISPR-mediated deletion of Runx1 in mouse metanephric mesenchyme-derived mK4 cells results in large-scale genome-wide changes to chromatin accessibility and gene expression. Open chromatin regions near down-regulated loci enriched for Runx sites in mK4 cells lose chromatin accessibility in Runx1 knockout cells, despite remaining Runx2-bound. Unexpectedly, regions near upregulated genes are depleted of Runx sites and are instead enriched for Zeb transcription factor binding sites. Re-expressing Zeb2 in Runx1 knockout cells restores suppression, and CRISPR mediated deletion of Zeb1 and Zeb2 phenocopies the gained expression and chromatin accessibility changes seen in Runx1KO due in part to subsequent activation of factors like Grhl2. These data confirm that Runx1 activity is uniquely needed to maintain open chromatin at many loci, and demonstrate that Zeb proteins are required and sufficient to maintain Runx1-dependent genome-scale repression.


Asunto(s)
Cromatina/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Regulación hacia Abajo , Ratones , Ratones Noqueados , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
17.
Cell ; 184(10): 2618-2632.e17, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33836156

RESUMEN

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , ADN-Topoisomerasas de Tipo I/metabolismo , SARS-CoV-2/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Animales , COVID-19/enzimología , COVID-19/patología , Chlorocebus aethiops , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Inflamación/patología , Inflamación/virología , Mesocricetus , Ratones , Ratones Transgénicos , Células THP-1 , Células Vero
18.
Cell Rep ; 34(12): 108891, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33761354

RESUMEN

Myeloid lineage cells use TLRs to recognize and respond to diverse microbial ligands. Although unique transcription factors dictate the outcome of specific TLR signaling, whether lineage-specific differences exist to further modulate the quality of TLR-induced inflammation remains unclear. Comprehensive analysis of global gene transcription in human monocytes, monocyte-derived macrophages, and monocyte-derived dendritic cells stimulated with various TLR ligands identifies multiple lineage-specific, TLR-responsive gene programs. Monocytes are hyperresponsive to TLR7/8 stimulation that correlates with the higher expression of the receptors. While macrophages and monocytes express similar levels of TLR4, macrophages, but not monocytes, upregulate interferon-stimulated genes (ISGs) in response to TLR4 stimulation. We find that TLR4 signaling in macrophages uniquely engages transcription factor IRF1, which facilitates the opening of ISG loci for transcription. This study provides a critical mechanistic basis for lineage-specific TLR responses and uncovers IRF1 as a master regulator for the ISG transcriptional program in human macrophages.


Asunto(s)
Cromatina/metabolismo , Regulación de la Expresión Génica , Factor 1 Regulador del Interferón/metabolismo , Interferones/farmacología , Macrófagos/metabolismo , Monocitos/metabolismo , Secuencia de Bases , Linaje de la Célula/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Quimiocinas/genética , Quimiocinas/metabolismo , Células Dendríticas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunidad , Factor 1 Regulador del Interferón/deficiencia , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Monocitos/efectos de los fármacos , Células Mieloides/citología , Motivos de Nucleótidos , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal , Células THP-1 , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
19.
Nat Commun ; 12(1): 1611, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712590

RESUMEN

Genome-wide association studies of Systemic Lupus Erythematosus (SLE) nominate 3073 genetic variants at 91 risk loci. To systematically screen these variants for allelic transcriptional enhancer activity, we construct a massively parallel reporter assay (MPRA) library comprising 12,396 DNA oligonucleotides containing the genomic context around every allele of each SLE variant. Transfection into the Epstein-Barr virus-transformed B cell line GM12878 reveals 482 variants with enhancer activity, with 51 variants showing genotype-dependent (allelic) enhancer activity at 27 risk loci. Comparison of MPRA results in GM12878 and Jurkat T cell lines highlights shared and unique allelic transcriptional regulatory mechanisms at SLE risk loci. In-depth analysis of allelic transcription factor (TF) binding at and around allelic variants identifies one class of TFs whose DNA-binding motif tends to be directly altered by the risk variant and a second class of TFs that bind allelically without direct alteration of their motif by the variant. Collectively, our approach provides a blueprint for the discovery of allelic gene regulation at risk loci for any disease and offers insight into the transcriptional regulatory mechanisms underlying SLE.


Asunto(s)
Alelos , Predisposición Genética a la Enfermedad/genética , Lupus Eritematoso Sistémico/genética , Linfocitos B , Línea Celular , Cromatina , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genotipo , Herpesvirus Humano 4 , Humanos , Sitios de Carácter Cuantitativo , Sinaptogirinas/genética , Linfocitos T
20.
Sci Adv ; 7(7)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33568479

RESUMEN

The lipogenic enzyme stearoyl CoA desaturase (SCD) plays a key role in tumor lipid metabolism and membrane architecture. SCD is often up-regulated and a therapeutic target in cancer. Here, we report the unexpected finding that median expression of SCD is low in glioblastoma relative to normal brain due to hypermethylation and unintentional monoallelic co-deletion with phosphatase and tensin homolog (PTEN) in a subset of patients. Cell lines from this subset expressed undetectable SCD, yet retained residual SCD enzymatic activity. Unexpectedly, these lines evolved to survive independent of SCD through unknown mechanisms. Cell lines that escaped such genetic and epigenetic alterations expressed higher levels of SCD and were highly dependent on SCD for survival. Last, we identify that SCD-dependent lines acquire resistance through a previously unknown FBJ murine osteosarcoma viral oncogene homolog B (FOSB)-mediated mechanism. Accordingly, FOSB inhibition blunted acquired resistance and extended survival of tumor-bearing mice treated with SCD inhibitor.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Estearoil-CoA Desaturasa , Animales , Resistencia a Antineoplásicos/genética , Humanos , Metabolismo de los Lípidos , Lipogénesis , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...