Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 61(48): 19588-19596, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36394390

RESUMEN

Measuring the luminance of lanthanide-based coordination polymers under UV excitation is of prime importance for many technological applications. This study highlights that the quantum yield gives no information about the luminescence intensity of a solid-state compound. Indeed, compounds with high quantum yield can actually be poorly luminescent. Therefore, a brightness calculation or a luminance measurement are mandatory for a quantitative estimation of the luminescence intensity. The calculated brightness appears to be a convenient quantitative parameter for the estimation of the luminescence intensity in the infrared domain, in which luminance is senseless. It is also a useful parameter in the visible domain, but one must keep in mind that only compounds with similar colorimetric coordinates can be compared. For comparing the luminescence intensities of compounds that exhibit different emission colors, the luminance measurement seems to be the most efficient method. A home-made setup that allows this measurement with high reproducibility is described in detail. The luminance of several lanthanide-based coordination polymers with benzene-poly-carboxylate ligands is measured, and the results are compared with brightness and quantum yield measurements. A standard is suggested for calibration.

2.
Opt Lett ; 46(10): 2465-2468, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988611

RESUMEN

Class A shot-noise limited operation is achieved in an electrically pumped vertical external cavity surface emitting laser (VECSEL), opening the way for integration of such peculiar noiseless laser oscillation in applications where low power consumption and footprint are mandatory. The quantum well active medium is grown on an InP substrate to enable laser oscillation at telecom wavelengths. Single frequency class A operation is obtained by proper optimization of the cavity dimensions, ensuring at the same time a sufficiently long and high-finesse cavity without any intracavity filtering components. The laser design constraints due to electrical pumping are discussed as compared to optical pumping. The intensity noise spectrum of this laser is shown to be shot-noise limited, leading to a relative intensity noise of $-160\;{\rm dB/Hz}$ for 3.1 mA detected photocurrent.

3.
Opt Express ; 28(15): 21407-21419, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752419

RESUMEN

We theoretically compute the coupling constant C between two emission modes of an extended cavity laser with a multiple quantum-well active layer. We use an optimized Monte Carlo model based on the Markov chain that describes the elementary events of carriers and photons over time. This model allows us to evaluate the influence on C of the transition from a class A laser to a class B laser and illustrates that the best stability of dual-mode lasers is obtained with the former. In addition, an extension of the model makes it possible to evaluate the influence of different mode profiles in the cavity as well as the spatial diffusion of the carriers and/or the inhomogeneity of the temperature. These results are in very good agreement with previous experimental results, showing the independence of C with respect to the beating frequency and its evolution versus the spatial mode splitting in the gain medium.

4.
Opt Express ; 27(15): 21083-21091, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510191

RESUMEN

Spectral dependence of Lamb coupling constant C is experimentally investigated in an InGaAlAs Quantum Wells active medium. An Optically-Pumped Vertical-External-Cavity Surface-Emitting Laser is designed to sustain the oscillation of two orthogonally polarized modes sharing the same active region while separated in the rest of the cavity. This laser design enables to tune independently the two wavelengths and, at the same time, to apply differential losses in order to extract without any extrapolation the actual coupling constant. C is found to be almost constant and equal to 0.84 ± 0.02 for frequency differences between the two eigenmodes ranging from 45 GHz up to 1.35 THz.

5.
Opt Express ; 26(20): 25952-25961, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-30469689

RESUMEN

Liquid crystal (LC) microcells monolithically integrated on the surface of InGaAs based photodiodes (PDs) are demonstrated. These LC microcells acting as tunable Fabry-Perot filters exhibit a wavelength tunability of more than 100 nm around 1550 nm with less than 10V applied voltage. Using a tunable laser operating in the S and C bands, photocurrent measurements are performed. On a 70 nm tuning range covered with a driving voltage lower than 7V, the average sensitivity for the PD is 0.4 A/W and the spectral linewidth of the LC filter remains constant, showing a FWHM of 1.5 nm. Finally, the emission spectrum from an Er-doped fiber is acquired by using this tunable PD as a micro-spectrometer.

6.
Opt Express ; 25(10): 11760-11766, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28788735

RESUMEN

A continuous-wave 1.6 µm-emitting InAs Quantum Dash-based Optically-Pumped Vertical-External-Cavity Surface-Emitting Laser on InP is demonstrated. The laser emits in the L-band with a stable linear polarization. Up to 163 mW output power has been obtained in multi-transverse mode regime. Single-frequency regime is achieved in the 1609-1622 nm range, with an estimated linewidth of 22 kHz in a 49 mm cavity, and a maximum emitted power of 7.9 mW at 1611 nm. In such conditions, the laser exhibits a Class-A behavior, with a cut-off frequency of 800 kHz and a shot-noise floor of -158 dB/Hz for 2 mA of detected photocurrent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...