Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 858(Pt 2): 159839, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334673

RESUMEN

Globally documented wild bee declines threaten sustainable food production and natural ecosystem functioning. Urban environments are often florally abundant, and consequently can contain high levels of pollinator diversity compared with agricultural environments. This has led to the suggestion that urban environments are an increasingly important habitat for pollinators. However, pesticides, such as commercial bug sprays, have a range of lethal and sub-lethal impacts on bees and are widely available for public use, with past work indicating that managed bees (honeybees and bumblebees) are exposed to a range of pesticides in urban environments. Despite this, we still have a poor understanding of (i) whether wild bees foraging in urban environments are exposed to pesticides and (ii) if exposure differs between genera. Here we assessed pesticide exposure in 8 bee genera foraging across multiple urban landscapes. We detected 13 different pesticides, some at concentrations known to have sub-lethal impacts on pollinators. Both the likelihood of pesticides being detected, and the concentrations observed, were higher for larger bees, likely due to their greater foraging ranges. Our results suggest that restricting agrochemical use in urban environments, where the economic benefits are limited, is a simple way to reduce anthropogenic stress on wild bees.


Asunto(s)
Plaguicidas , Abejas , Animales , Plaguicidas/análisis , Polinización , Jardines , Ecosistema , Pradera
2.
Ecology ; 104(1): e3890, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208124

RESUMEN

Phenological distributions are characterized by their central tendency, breadth, and shape, and all three determine the extent to which interacting species overlap in time. Pollination mutualisms rely on temporal co-occurrence of pollinators and their floral resources, and although much work has been done to characterize the shapes of flower phenological distributions, similar studies that include pollinators are lacking. Here, we provide the first broad assessment of skewness, a component of distribution shape, for a bee community. We compare skewness in bees to that in flowers, relate bee and flower skewness to other properties of their phenology, and quantify the potential consequences of differences in skewness between bees and flowers. Both bee and flower phenologies tend to be right-skewed, with a more exaggerated asymmetry in bees. Early-season species tend to be the most skewed, and this relationship is also stronger in bees than in flowers. Based on a simulation experiment, differences in bee and flower skewness could account for up to 14% of pairwise overlap differences. Given the potential for interaction loss, we argue that difference in skewness of interacting species is an underappreciated property of phenological change.


Asunto(s)
Distribución Animal , Abejas , Flores , Dispersión de las Plantas , Polinización , Animales , Abejas/fisiología , Estaciones del Año , Dispersión de las Plantas/fisiología
3.
Proc Biol Sci ; 289(1973): 20212697, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35440209

RESUMEN

Life-history traits, which are physical traits or behaviours that affect growth, survivorship and reproduction, could play an important role in how well organisms respond to environmental change. By looking for trait-based responses within groups, we can gain a mechanistic understanding of why environmental change might favour or penalize certain species over others. We monitored the abundance of at least 154 bee species for 8 consecutive years in a subalpine region of the Rocky Mountains to ask whether bees respond differently to changes in abiotic conditions based on their life-history traits. We found that comb-building cavity nesters and larger bodied bees declined in relative abundance with increasing temperatures, while smaller, soil-nesting bees increased. Further, bees with narrower diet breadths increased in relative abundance with decreased rainfall. Finally, reduced snowpack was associated with reduced relative abundance of bees that overwintered as prepupae whereas bees that overwintered as adults increased in relative abundance, suggesting that overwintering conditions might affect body size, lipid content and overwintering survival. Taken together, our results show how climate change may reshape bee pollinator communities, with bees with certain traits increasing in abundance and others declining, potentially leading to novel plant-pollinator interactions and changes in plant reproduction.


Asunto(s)
Cambio Climático , Rasgos de la Historia de Vida , Animales , Abejas , Fenotipo , Polinización/fisiología , Reproducción , Temperatura
4.
Ecol Lett ; 23(11): 1589-1598, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32812695

RESUMEN

Climate change is shifting the environmental cues that determine the phenology of interacting species. Plant-pollinator systems may be susceptible to temporal mismatch if bees and flowering plants differ in their phenological responses to warming temperatures. While the cues that trigger flowering are well-understood, little is known about what determines bee phenology. Using generalised additive models, we analyzed time-series data representing 67 bee species collected over 9 years in the Colorado Rocky Mountains to perform the first community-wide quantification of the drivers of bee phenology. Bee emergence was sensitive to climatic variation, advancing with earlier snowmelt timing, whereas later phenophases were best explained by functional traits including overwintering stage and nest location. Comparison of these findings to a long-term flower study showed that bee phenology is less sensitive than flower phenology to climatic variation, indicating potential for reduced synchrony of flowers and pollinators under climate change.


Asunto(s)
Cambio Climático , Flores , Animales , Abejas , Colorado , Estaciones del Año , Temperatura
5.
Emerg Top Life Sci ; 2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32556128

RESUMEN

Ecological restoration is increasingly implemented to reverse habitat loss and concomitant declines in biological diversity. Typically, restoration success is evaluated by measuring the abundance and/or diversity of a single taxon. However, for a restoration to be successful and persistent, critical ecosystem functions such as animal-mediated pollination must be maintained. In this review, we focus on three aspects of pollination within ecological restorations. First, we address the need to measure pollination directly in restored habitats. Proxies such as pollinator abundance and richness do not always accurately assess pollination function. Pollen supplementation experiments, pollen deposition studies, and pollen transport networks are more robust methods for assessing pollination function within restorations. Second, we highlight how local-scale management and landscape-level factors may influence pollination within restorations. Local-scale management actions such as prescribed fire and removal of non-native species can have large impacts on pollinator communities and ultimately on pollination services. In addition, landscape context including proximity and connectivity to natural habitats may be an important factor for land managers and conservation practitioners to consider to maximize restoration success. Third, as climate change is predicted to be a primary driver of future loss in biodiversity, we discuss the potential effects climate change may have on animal-mediated pollination within restorations. An increased mechanistic understanding of how climate change affects pollination and incorporation of climate change predictions will help practitioners design stable, functioning restorations into the future.

6.
Glob Chang Biol ; 24(2): 848-857, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28805338

RESUMEN

Frost is an important episodic event that damages plant tissues through the formation of ice crystals at or below freezing temperatures. In montane regions, where climate change is expected to cause earlier snow melt but may not change the last frost-free day of the year, plants that bud earlier might be directly impacted by frost through damage to flower buds and reproductive structures. However, the indirect effects of frost mediated through changes in plant-pollinator interactions have rarely been explored. We examined the direct and pollinator-mediated indirect effects of frost on three wildflower species in southwestern Colorado, USA, Delphinium barbeyi (Ranunculaceae), Erigeron speciosus (Asteraceae), and Polemonium foliosissimum (Polemoniaceae), by simulating moderate (-1 to -5°C) frost events in early spring in plants in situ. Subsequently, we measured plant growth, and upon flowering measured flower morphology and phenology. Throughout the flowering season, we monitored pollinator visitation and collected seeds to measure plant reproduction. We found that frost had species-specific direct and indirect effects. Frost had direct effects on two of the three species. Frost significantly reduced flower size, total flowers produced, and seed production of Erigeron. Furthermore, frost reduced aboveground plant survival and seed production for Polemonium. However, we found no direct effects of frost on Delphinium. When we considered the indirect impacts of frost mediated through changes in pollinator visitation, one species, Erigeron, incurred indirect, negative effects of frost on plant reproduction through changes in floral traits and pollinator visitation, along with direct effects. Overall, we found that flowering plants exhibited species-specific direct and pollinator-mediated indirect responses to frost, thus suggesting that frost may play an important role in affecting plant communities under climate change.


Asunto(s)
Congelación , Magnoliopsida/fisiología , Desarrollo de la Planta/fisiología , Polinización/fisiología , Animales , Cambio Climático , Colorado , Flores/crecimiento & desarrollo , Magnoliopsida/clasificación , Reproducción/fisiología , Estaciones del Año , Semillas/fisiología
7.
Ecology ; 93(5): 992-1001, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22764486

RESUMEN

Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.


Asunto(s)
Hormigas/parasitología , Biodiversidad , Escarabajos/fisiología , Dípteros/fisiología , Cadena Alimentaria , Animales , Coffea , Frutas , Herbivoria , Interacciones Huésped-Parásitos , Conducta Predatoria
8.
Environ Entomol ; 40(3): 581-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22251635

RESUMEN

Nonconsumptive effects (NCE) of parasites on hosts vary with habitat complexity thereby modifying trait-mediated effects on lower trophic levels. In coffee agroecosystems, Pseudacteon sp. phorid fly parasites negatively affect Azteca instabilis F. Smith ants via NCE thereby indirectly benefiting prey. It is unknown how differences in habitat complexity influence Azteca-phorid interactions or how phorids affect the coffee berry borer (Hypothenemus hampei Ferrari), an important pest of coffee (Coffea arabica L). We tested the following hypotheses in field and lab experiments to find the impact of NCE of phorids on A. instabilis and trait-mediated indirect effects of phorids on the coffee berry borer: (1) Phorid effects on A. instabilis differ between complex and simple shade habitats and (2) Phorids, by modifying A. instabilis behavior, indirectly affect coffee berry borer abilities to invade coffee berries. Phorids had greater impacts on A. instabilis activity in low-shade farms, but differences in phorid impacts were not mediated by phorid density or light availability. In the lab, phorids had strong cascading effects on abilities of A. instabilis to deter coffee berry borers. Without phorids, A. instabilis limited coffee berry borer attacks, whereas when the coffee berry borer was alone or with A. instabilis and phorids, more coffee fruits were attacked by coffee berry borer. These results indicate that A. instabilis has stronger biological control potential in high-shade farms, but the exact mechanism deserves further attention.


Asunto(s)
Hormigas/parasitología , Coffea/parasitología , Dípteros/fisiología , Ecosistema , Interacciones Huésped-Parásitos , Gorgojos/fisiología , Animales , Femenino , México , Luz Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...