Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34380734

RESUMEN

While orthosteric ligands of the angiotensin II (AngII) type 1 receptor (AT1R) are available for clinical and research applications, allosteric ligands are not known for this important G protein-coupled receptor (GPCR). Allosteric ligands are useful tools to modulate receptor pharmacology and subtype selectivity. Here, we report AT1R allosteric ligands for a potential application to block autoimmune antibodies. The epitope of autoantibodies for AT1R is outside the orthosteric pocket in the extracellular loop 2. A molecular dynamics simulation study of AT1R structure reveals the presence of a druggable allosteric pocket encompassing the autoantibody epitope. Small molecule binders were then identified for this pocket using structure-based high-throughput virtual screening. The top 18 hits obtained inhibited the binding of antibody to AT1R and modulated agonist-induced calcium response of AT1R. Two compounds out of 18 studied in detail exerted a negative allosteric modulator effect on the functions of the natural agonist AngII. They blocked antibody-enhanced calcium response and reactive oxygen species production in vascular smooth muscle cells as well as AngII-induced constriction of blood vessels, demonstrating their efficacy in vivo. Our study thus demonstrates the feasibility of discovering inhibitors of the disease-causing autoantibodies for GPCRs. Specifically, for AT1R, we anticipate development of more potent allosteric drug candidates for intervention in autoimmune maladies such as preeclampsia, bilateral adrenal hyperplasia, and the rejection of organ transplants.


Asunto(s)
Autoanticuerpos , Diseño de Fármacos , Receptor de Angiotensina Tipo 1/agonistas , Angiotensina II , Animales , Especificidad de Anticuerpos , Calcio/metabolismo , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunoglobulina G , Ligandos , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Conejos , Receptores Opioides , Vasoconstricción/efectos de los fármacos
2.
Medchemcomm ; 9(9): 1472-1490, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30288222

RESUMEN

Casein kinase 2 (CK2) and glycogen synthase kinase-3beta (GSK3ß) are responsible for the phosphorylation of a tumor suppressor protein (PTEN) in a cooperative manner which causes its deactivation. Thus, it is essential to inhibit both kinases simultaneously to prevent PTEN deactivation more efficiently. In this study, we have designed a novel lead from Hit15 which was identified in silico as a dual kinase inhibitor against CK2 and GSK3ß through our previous study. The dataset of structural analogs of the lead was designed and confirmed by pharmacophore mapping and molecular docking. The screened analogs were considered further and a series of "tetrahydrobenzo[d]thiazoles" were synthesized. Compound 1g has shown highest dual kinase inhibitory activity at a concentration of 1.9 µM against CK2 and 0.67 µM against GSK3ß. Our results suggest that the presence of a carboxyl group at the meta position of the phenyl ring plays a vital role in dual kinase inhibition.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA