RESUMEN
Ichthyological surveys have traditionally been conducted using whole-specimen, capture-based sampling with varied but conventional fishing gear. Recently, environmental DNA (eDNA) metabarcoding has emerged as a complementary, and possible alternative, approach to whole-specimen methodologies. In the tropics, where much of the diversity remains undescribed, vast reaches continue unexplored, and anthropogenic activities are constant threats; there have been few eDNA attempts for ichthyological inventories. We tested the discriminatory power of eDNA using MiFish primers with existing public reference libraries and compared this with capture-based methods in two distinct ecosystems in the megadiverse Amazon basin. In our study, eDNA provided an accurate snapshot of the fishes at higher taxonomic levels and corroborated its effectiveness to detect specialized fish assemblages. Some flaws in fish metabarcoding studies are routine issues addressed in natural history museums. Thus, by expanding their archives and adopting a series of initiatives linking collection-based research, training and outreach, natural history museums can enable the effective use of eDNA to survey Earth's hotspots of biodiversity before taxa go extinct. Our project surveying poorly explored rivers and using DNA vouchered archives to build metabarcoding libraries for Neotropical fishes can serve as a model of this protocol.
Asunto(s)
Biodiversidad , ADN Ambiental/análisis , Peces/genética , Museos , Animales , Código de Barras del ADN Taxonómico , Análisis de Datos , Bases de Datos Genéticas , Peces/clasificación , Filogenia , Ríos , América del Sur , Especificidad de la Especie , Encuestas y CuestionariosRESUMEN
The cyprinodontiform family Goodeidae comprises some 51 species, including subspecies, of freshwater fishes all of which are at risk or are extinct in the wild. It is classified in two allopatric subfamilies: the Goodeinae, endemic to the Mexican Plateau, and the Empetrichthyinae, known only from relict taxa in Nevada and southern California. The 41 species of goodeins are all viviparous and share a set of well-documented reproductive characters. In contrast, the recent species or subspecies of empetrichthyins are all oviparous and relatively poorly known, yet of critical interest in understanding the evolution of livebearing in the family. We previously described ovarian structure and oogenesis in empetrichthyins using archival museum specimens of females and here extend that study to males. Testicular characters of two species of empetrichthyins, Crenichthys baileyi, and Empetrichthys latos, are studied and compared directly with those of one species of viviparous goodeid, Ataeniobius toweri. The testis is a restricted spermatogonial type in both the Empetrichthyinae and the Goodeinae: spermatogonia are found solely at the distal termini of lobules, a diagnostic character of atherinomorph fishes. Morphology of the differentiation of germinal cells during spermatogenesis is similar in both subfamilies. In the oviparous C. baileyi and E. latos spermatozoa are free in the deferent ducts. In contrast, the spermatozoa of viviparous goodeids are organized into numerous bundles called spermatozeugmata, a characteristic of most fishes that practice internal fertilization. Differences between the goodeid subfamilies are interpreted relative to the oviparous versus viviparous modes of reproduction. Archival museum specimens are a reliable source of data on reproductive morphology, including histology, and may be the only specimens available of rare or extinct taxa.