Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(6): eabm2382, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35138907

RESUMEN

Fusion genes represent a class of attractive therapeutic targets. Thousands of fusion genes have been identified in patients with cancer, but the functional consequences and therapeutic implications of most of these remain largely unknown. Here, we develop a functional genomic approach that consists of efficient fusion reconstruction and sensitive cell viability and drug response assays. Applying this approach, we characterize ~100 fusion genes detected in patient samples of The Cancer Genome Atlas, revealing a notable fraction of low-frequency fusions with activating effects on tumor growth. Focusing on those in the RTK-RAS pathway, we identify a number of activating fusions that can markedly affect sensitivity to relevant drugs. Last, we propose an integrated, level-of-evidence classification system to prioritize gene fusions systematically. Our study reiterates the urgent clinical need to incorporate similar functional genomic approaches to characterize gene fusions, thereby maximizing the utility of gene fusions for precision oncology.


Asunto(s)
Neoplasias , Fusión Génica , Genoma , Genómica , Humanos , Neoplasias/genética , Medicina de Precisión
2.
Front Cardiovasc Med ; 8: 639148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34250035

RESUMEN

LMNA is one of the leading causative genes of genetically inherited dilated cardiomyopathy (DCM). Unlike most DCM-causative genes, which encode sarcomeric or sarcomere-related proteins, LMNA encodes nuclear envelope proteins, lamin A and C, and does not directly associate with contractile function. However, a mutation in this gene could lead to the development of DCM. The molecular mechanism of how LMNA mutation contributes to DCM development remains largely unclear and yet to be elucidated. The objective of this study was to clarify the mechanism of developing DCM caused by LMNA mutation. Methods and Results: We assessed cardiomyocyte phenotypes and characteristics focusing on cell cycle activity in mice with Lmna mutation. Both cell number and cell size were reduced, cardiomyocytes were immature, and cell cycle activity was retarded in Lmna mutant mice at both 5 weeks and 2 years of age. RNA-sequencing and pathway analysis revealed "proliferation of cells" had the most substantial impact on Lmna mutant mice. Cdkn1a, which encodes the cell cycle regulating protein p21, was strongly upregulated in Lmna mutants, and upregulation of p21 was confirmed by Western blot and immunostaining. DNA damage, which is known to upregulate Cdkn1a, was more abundantly detected in Lmna mutant mice. To assess the proliferative capacity of cardiomyocytes, the apex of the neonate mouse heart was resected, and recovery from the insult was observed. A restricted cardiomyocyte proliferating capacity after resecting the apex of the heart was observed in Lmna mutant mice. Conclusions: Our results strongly suggest that loss of lamin function contributes to impaired cell proliferation through cell cycle defects. The inadequate inborn or responsive cell proliferation capacity plays an essential role in developing DCM with LMNA mutation.

3.
Nat Genet ; 52(8): 769-777, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32601476

RESUMEN

A genetic etiology is identified for one-third of patients with congenital heart disease (CHD), with 8% of cases attributable to coding de novo variants (DNVs). To assess the contribution of noncoding DNVs to CHD, we compared genome sequences from 749 CHD probands and their parents with those from 1,611 unaffected trios. Neural network prediction of noncoding DNV transcriptional impact identified a burden of DNVs in individuals with CHD (n = 2,238 DNVs) compared to controls (n = 4,177; P = 8.7 × 10-4). Independent analyses of enhancers showed an excess of DNVs in associated genes (27 genes versus 3.7 expected, P = 1 × 10-5). We observed significant overlap between these transcription-based approaches (odds ratio (OR) = 2.5, 95% confidence interval (CI) 1.1-5.0, P = 5.4 × 10-3). CHD DNVs altered transcription levels in 5 of 31 enhancers assayed. Finally, we observed a DNV burden in RNA-binding-protein regulatory sites (OR = 1.13, 95% CI 1.1-1.2, P = 8.8 × 10-5). Our findings demonstrate an enrichment of potentially disruptive regulatory noncoding DNVs in a fraction of CHD at least as high as that observed for damaging coding DNVs.


Asunto(s)
Variación Genética/genética , Cardiopatías Congénitas/genética , ARN no Traducido/genética , Adolescente , Adulto , Animales , Femenino , Predisposición Genética a la Enfermedad/genética , Genómica , Corazón/fisiología , Humanos , Masculino , Ratones , Persona de Mediana Edad , Sistemas de Lectura Abierta/genética , Proteínas de Unión al ARN/genética , Transcripción Genética/genética , Adulto Joven
4.
Genet Med ; 21(1): 133-143, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29892087

RESUMEN

PURPOSE: We evaluated strategies for identifying disease-causing variants in genetic testing for dilated cardiomyopathy (DCM). METHODS: Cardiomyopathy gene panel testing was performed in 532 DCM patients and 527 healthy control subjects. Rare variants in 41 genes were stratified using variant-level and gene-level characteristics. RESULTS: A majority of DCM cases and controls carried rare protein-altering cardiomyopathy gene variants. Variant-level characteristics alone had limited discriminative value. Differentiation between groups was substantially improved by addition of gene-level information that incorporated ranking of genes based on literature evidence for disease association. The odds of DCM were increased to nearly 9-fold for truncating variants or high-impact missense variants in the subset of 14 genes that had the strongest biological links to DCM (P <0.0001). For some of these genes, DCM-associated variants appeared to be clustered in key protein functional domains. Multiple rare variants were present in many family probands, however, there was generally only one "driver" pathogenic variant that cosegregated with disease. CONCLUSION: Rare variants in cardiomyopathy genes can be effectively stratified by combining variant-level and gene-level information. Prioritization of genes based on their a priori likelihood of disease causation is a key factor in identifying clinically actionable variants in cardiac genetic testing.


Asunto(s)
Cardiomiopatía Dilatada/genética , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Raras/genética , Cardiomiopatía Dilatada/diagnóstico , Cardiomiopatía Dilatada/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Linaje , Enfermedades Raras/diagnóstico , Enfermedades Raras/patología
5.
Curr Protoc Hum Genet ; 97(1): e58, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-30040209

RESUMEN

DNA structural variants can be analyzed by droplet digital PCR (ddPCR), a water-oil microfluidics and fluorescence technology to quantify target nucleic acids with extreme precision and sensitivity. Traditional ddPCR uses expensive fluorescent oligonucleotide probes that require extensive optimization. Here we describe a variation of ddPCR using a DNA-binding dye (EvaGreen), whose properties allow target products to be effectively quantified at a significantly lower cost. © 2018 by John Wiley & Sons, Inc.


Asunto(s)
ADN/análisis , Sondas Moleculares/química , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Bioensayo , Humanos
6.
Hum Mutat ; 39(6): 870-881, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29527824

RESUMEN

Multiple tools have been developed to identify copy number variants (CNVs) from whole exome (WES) and whole genome sequencing (WGS) data. Current tools such as XHMM for WES and CNVnator for WGS identify CNVs based on changes in read depth. For WGS, other methods to identify CNVs include utilizing discordant read pairs and split reads and genome-wide local assembly with tools such as Lumpy and SvABA, respectively. Here, we introduce a new method to identify deletion CNVs from WES and WGS trio data based on the clustering of Mendelian errors (MEs). Using our Mendelian Error Method (MEM), we identified 127 deletions (inherited and de novo) in 2,601 WES trios from the Pediatric Cardiac Genomics Consortium, with a validation rate of 88% by digital droplet PCR. MEM identified additional de novo deletions compared with XHMM, and a significant enrichment of 15q11.2 deletions compared with controls. In addition, MEM identified eight cases of uniparental disomy, sample switches, and DNA contamination. We applied MEM to WGS data from the Genome In A Bottle Ashkenazi trio and identified deletions with 97% specificity. MEM provides a robust, computationally inexpensive method for identifying deletions, and an orthogonal approach for verifying deletions called by other tools.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Análisis Mutacional de ADN/métodos , Genoma Humano/genética , Eliminación de Secuencia/genética , Mapeo Cromosómico , Exoma/genética , Femenino , Cardiopatías Congénitas/genética , Humanos , Masculino , Secuenciación del Exoma , Secuenciación Completa del Genoma
7.
PLoS One ; 13(1): e0186945, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29360822

RESUMEN

Deep nucleotide sequencing enables the unbiased, broad-spectrum detection of viruses in clinical samples without requiring an a priori hypothesis for the source of infection. However, its use in clinical research applications is limited by low cost-effectiveness given that most of the sequencing information from clinical samples is related to the human genome, which renders the analysis of viral genomes challenging. To overcome this limitation we developed ViroFind, an in-solution target-enrichment platform for virus detection and discovery in clinical samples. ViroFind comprises 165,433 viral probes that cover the genomes of 535 selected DNA and RNA viruses that infect humans or could cause zoonosis. The ViroFind probes are used in a hybridization reaction to enrich viral sequences and therefore enhance the detection of viral genomes via deep sequencing. We used ViroFind to detect and analyze all viral populations in the brain of 5 patients with progressive multifocal leukoencephalopathy (PML) and of 18 control subjects with no known neurological disease. Compared to direct deep sequencing, by using ViroFind we enriched viral sequences present in the clinical samples up to 127-fold. We discovered highly complex polyoma virus JC populations in the PML brain samples with a remarkable degree of genetic divergence among the JC virus variants of each PML brain sample. Specifically for the viral capsid protein VP1 gene, we identified 24 single nucleotide substitutions, 12 of which were associated with amino acid changes. The most frequent (4 of 5 samples, 80%) amino acid change was D66H, which is associated with enhanced tissue tropism, and hence likely a viral fitness advantage, compared to other variants. Lastly, we also detected sparse JC virus sequences in 10 of 18 (55.5%) of control samples and sparse human herpes virus 6B (HHV6B) sequences in the brain of 11 of 18 (61.1%) control subjects. In sum, ViroFind enabled the in-depth analysis of all viral genomes in PML and control brain samples and allowed us to demonstrate a high degree of JC virus genetic divergence in vivo that has been previously underappreciated. ViroFind can be used to investigate the structure of the virome with unprecedented depth in health and disease state.


Asunto(s)
Encéfalo/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Virus JC/aislamiento & purificación , Leucoencefalopatía Multifocal Progresiva/virología , Genes Virales , Humanos , Virus JC/genética
8.
JCI Insight ; 1(6)2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27239561

RESUMEN

Dilated cardiomyopathy (DCM) is defined by progressive functional and structural changes. We performed RNA-seq at different stages of disease to define molecular signaling in the progression from pre-DCM hearts to DCM and overt heart failure (HF) using a genetic model of DCM (phospholamban missense mutation, PLNR9C/+). Pre-DCM hearts were phenotypically normal yet displayed proliferation of nonmyocytes (59% relative increase vs. WT, P = 8 × 10-4) and activation of proinflammatory signaling with notable cardiomyocyte-specific induction of a subset of profibrotic cytokines including TGFß2 and TGFß3. These changes progressed through DCM and HF, resulting in substantial fibrosis (17.6% of left ventricle [LV] vs. WT, P = 6 × 10-33). Cardiomyocytes displayed a marked shift in metabolic gene transcription: downregulation of aerobic respiration and subsequent upregulation of glucose utilization, changes coincident with attenuated expression of PPARα and PPARγ coactivators -1α (PGC1α) and -1ß, and increased expression of the metabolic regulator T-box transcription factor 15 (Tbx15). Comparing DCM transcriptional profiles with those in hypertrophic cardiomyopathy (HCM) revealed similar and distinct molecular mechanisms. Our data suggest that cardiomyocyte-specific cytokine expression, early fibroblast activation, and the shift in metabolic gene expression are hallmarks of cardiomyopathy progression. Notably, key components of these profibrotic and metabolic networks were disease specific and distinguish DCM from HCM.

9.
Curr Protoc Hum Genet ; 86: 18.9.1-18.9.10, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26132004

RESUMEN

Viruses and bacteria are established as one of the main causes of human diseases from hepatitis to cancer. Recently, the presence of such pathogens has been extensively studied using human whole genome and transcriptome sequencing data. However, detecting and studying pathogens via next generation sequencing data is a challenging task in terms of time and computational resources. In this protocol we give instructions for a simple and quick method to find pathogenic DNA or RNA and detect possible integration of the pathogen genome into the host genome.


Asunto(s)
Secuencia de Bases , Biología Computacional/métodos , Genes Microbianos , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN/métodos , Bases de Datos de Ácidos Nucleicos , Genoma Microbiano , Genómica/métodos , Humanos , Programas Informáticos
10.
Proc Natl Acad Sci U S A ; 111(43): 15544-9, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25313082

RESUMEN

Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.


Asunto(s)
Genoma Humano/genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/virología , Interacciones Huésped-Patógeno/genética , Papillomaviridae/fisiología , Secuencia de Bases , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Humanos , Datos de Secuencia Molecular , Integración Viral/genética
11.
Circ Res ; 114(5): 845-50, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24379297

RESUMEN

RATIONALE: Two distinct alleles in the gene encoding apolipoprotein L1 (APOL1), a major component of high-density lipoprotein, confer protection against Trypanosoma brucei rhodesiense infection and also increase risk for chronic kidney disease. Approximately 14% of Americans with African ancestry carry 2 APOL1 risk alleles, accounting for the high chronic kidney disease burden in this population. OBJECTIVE: We tested whether APOL1 risk alleles significantly increase risk for atherosclerotic cardiovascular disease (CVD) in African Americans. METHODS AND RESULTS: We sequenced APOL1 in 1959 randomly selected African American participants in the Jackson Heart Study (JHS) and evaluated associations between APOL1 genotypes and renal and cardiovascular phenotypes. Previously identified association between APOL1 genotypes and chronic kidney disease was confirmed (P=2.4×10(-6)). Among JHS participants with 2 APOL1 risk alleles, we observed increased risk for CVD (50/763 events among participants without versus 37/280 events among participants with 2 risk alleles; odds ratio, 2.17; P=9.4×10(-4)). We replicated this novel association of APOL1 genotype with CVD in Women's Health Initiative (WHI) participants (66/292 events among participants without versus 37/101 events among participants with 2 risk alleles; odds ratio, 1.98; P=8.37×10(-3); JHS and WHI combined, P=8.5×10(-5); odds ratio, 2.12). The increased risk for CVD conferred by APOL1 alleles was robust to correction for both traditional CVD risk factors and chronic kidney disease. CONCLUSIONS: APOL1 variants contribute to atherosclerotic CVD risk, indicating a genetic component to cardiovascular health disparities in individuals of African ancestry. The considerable population of African Americans with 2 APOL1 risk alleles may benefit from intensive interventions to reduce CVD.


Asunto(s)
Apolipoproteínas/genética , Aterosclerosis/etnología , Aterosclerosis/genética , Negro o Afroamericano/genética , Negro o Afroamericano/estadística & datos numéricos , Lipoproteínas HDL/genética , Adulto , Anciano , Apolipoproteína L1 , Femenino , Predisposición Genética a la Enfermedad/etnología , Predisposición Genética a la Enfermedad/genética , Variación Genética , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Insuficiencia Renal Crónica/etnología , Insuficiencia Renal Crónica/genética , Factores de Riesgo
12.
Hum Mol Genet ; 23(1): 209-25, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23975679

RESUMEN

Recent human genetic studies have provided evidences that sporadic or inherited missense mutations in four-and-a-half LIM domain protein 1 (FHL1), resulting in alterations in FHL1 protein expression, are associated with rare congenital myopathies, including reducing body myopathy and Emery-Dreifuss muscular dystrophy. However, it remains to be clarified whether mutations in FHL1 cause skeletal muscle remodeling owing to gain- or loss of FHL1 function. In this study, we used FHL1-null mice lacking global FHL1 expression to evaluate loss-of-function effects on skeletal muscle homeostasis. Histological and functional analyses of soleus, tibialis anterior and sternohyoideus muscles demonstrated that FHL1-null mice develop an age-dependent myopathy associated with myofibrillar and intermyofibrillar (mitochondrial and sarcoplasmic reticulum) disorganization, impaired muscle oxidative capacity and increased autophagic activity. A longitudinal study established decreased survival rates in FHL1-null mice, associated with age-dependent impairment of muscle contractile function and a significantly lower exercise capacity. Analysis of primary myoblasts isolated from FHL1-null muscles demonstrated early muscle fiber differentiation and maturation defects, which could be rescued by re-expression of the FHL1A isoform, highlighting that FHL1A is necessary for proper muscle fiber differentiation and maturation in vitro. Overall, our data show that loss of FHL1 function leads to myopathy in vivo and suggest that loss of function of FHL1 may be one of the mechanisms underlying muscle dystrophy in patients with FHL1 mutations.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Distrofias Musculares/patología , Miofibrillas/patología , Factores de Edad , Animales , Diferenciación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Actividad Motora , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Distrofia Muscular de Emery-Dreifuss/patología , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Miofibrillas/metabolismo
13.
Nature ; 498(7453): 220-3, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23665959

RESUMEN

Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent-offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left-right organizer. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes 'poised' promoters and enhancers, which regulate expression of key developmental genes. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.


Asunto(s)
Cardiopatías/congénito , Cardiopatías/genética , Histonas/metabolismo , Adulto , Estudios de Casos y Controles , Niño , Cromatina/química , Cromatina/metabolismo , Análisis Mutacional de ADN , Elementos de Facilitación Genéticos/genética , Exoma/genética , Femenino , Genes del Desarrollo/genética , Cardiopatías/metabolismo , Histonas/química , Humanos , Lisina/química , Lisina/metabolismo , Masculino , Metilación , Mutación , Oportunidad Relativa , Regiones Promotoras Genéticas/genética
14.
Am J Hum Genet ; 91(3): 513-9, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22958901

RESUMEN

Rare sarcomere protein variants cause dominant hypertrophic and dilated cardiomyopathies. To evaluate whether allelic variants in eight sarcomere genes are associated with cardiac morphology and function in the community, we sequenced 3,600 individuals from the Framingham Heart Study (FHS) and Jackson Heart Study (JHS) cohorts. Out of the total, 11.2% of individuals had one or more rare nonsynonymous sarcomere variants. The prevalence of likely pathogenic sarcomere variants was 0.6%, twice the previous estimates; however, only four of the 22 individuals had clinical manifestations of hypertrophic cardiomyopathy. Rare sarcomere variants were associated with an increased risk for adverse cardiovascular events (hazard ratio: 2.3) in the FHS cohort, suggesting that cardiovascular risk assessment in the general population can benefit from rare variant analysis.


Asunto(s)
Enfermedades Cardiovasculares/genética , Variación Genética , Sarcómeros/genética , Adulto , Anciano , Anciano de 80 o más Años , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/genética , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Factores de Riesgo
15.
J Neurol Sci ; 255(1-2): 42-9, 2007 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-17328917

RESUMEN

There is evidence that most forms of ischaemic stroke (IS) result from synergistic effects of the modifiable predisposing factors and multiple genes. In the present work, we report results of case-control study of IS association with apolipoprotein E gene (APOE) (promoter and coding polymorphisms) and lipoprotein lipase gene (LPL) (presence/absence of a HindIII cutting site). We studied 107 unrelated patients of Yakut ethnicity (69 men and 38 women, mean age 58.4+/-11.5 years) with first-ever IS in carotid/middle cerebral artery regions. The control group included 101 subjects of the same ethnicity (61 men and 40 women, mean age 57.6+/-11.6 years) free of clinically detectable cerebrovascular disease, and without any history of stroke. A positive association of IS with APOE -427T allele (p=0.0012, OR=3.99) and -427T/T genotype (p=0.0005, OR=4.96) and a negative association with -427C allele (p=0.0012, OR=0.25), -427T/C genotype (p=0.0003, OR=0.18), epsilon2 allele (p=0.018, OR=0.35), epsilon2/3 genotype (p=0.017, OR=0.28) and -491A/-427C/epsilon2 haplotype (p=0.0026, OR=0.18) were observed. For atherothrombotic subgroup the same allele and genotype associations were found plus association with APOE -491A allele (p=0.026, OR=3.98). No reliable IS associations were found with LPL T+495G (HindIII) polymorphism. An association of APOE promoter polymorphisms (A-491T, T-427C) with an IS is shown in our study for the first time. Our study provides evidence for the role of APOE gene as a prognostic genetic marker for IS, especially for its atherothrombotic subtype.


Asunto(s)
Apolipoproteínas E/genética , Pueblo Asiatico/genética , Isquemia Encefálica/etnología , Isquemia Encefálica/genética , Lipoproteína Lipasa/genética , Accidente Cerebrovascular/etnología , Accidente Cerebrovascular/genética , Anciano , Apolipoproteínas E/sangre , Isquemia Encefálica/sangre , Estenosis Carotídea/sangre , Estenosis Carotídea/etnología , Estenosis Carotídea/genética , Análisis Mutacional de ADN , Femenino , Frecuencia de los Genes/genética , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas , Genotipo , Humanos , Infarto de la Arteria Cerebral Media/sangre , Infarto de la Arteria Cerebral Media/etnología , Infarto de la Arteria Cerebral Media/genética , Lipoproteína Lipasa/sangre , Masculino , Persona de Mediana Edad , Polimorfismo Genético/genética , Siberia/etnología , Accidente Cerebrovascular/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...