Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
FEMS Microbiol Ecol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138059

RESUMEN

The factors shaping host-parasite interactions and epibiont communities in the variable rocky intertidal zone are poorly understood. California mussels, Mytilus californianus, are colonized by endolithic cyanobacterial parasites which erode the host shell. These cyanobacteria become mutualistic under certain abiotic conditions because shell erosion can protect mussels from thermal stress. How parasitic shell erosion affects or is affected by epibiotic microbial communities on mussel shells and the context dependency of these interactions is unknown. We used transplant experiments to characterize assemblages of epibiotic bacteria and endolithic parasites on mussel shells across intertidal elevation gradients. We hypothesized that living mussels, and associated epibacterial communities, could limit colonization and erosion by endolithic cyanobacteria compared to empty mussel shells. We hypothesized that shell erosion would be associated with compositional shifts in the epibacterial community and tidal elevation. We found that living mussels experienced less shell erosion than empty shells, demonstrating potential biotic regulation of endolithic parasites. Increased shell erosion was not associated with a distinct epibacterial community and was decoupled from the relative abundance of putatively endolithic taxa. Our findings suggest that epibacterial community structure is not directly impacted by the dynamic symbiosis between endolithic cyanobacteria and mussels throughout the rocky intertidal zone.

2.
Microb Ecol ; 87(1): 106, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141097

RESUMEN

Seagrass meadows play pivotal roles in coastal biochemical cycles, with nitrogen fixation being a well-established process associated with living seagrass. Here, we tested the hypothesis that nitrogen fixation is also associated with seagrass debris in Danish coastal waters. We conducted a 52-day in situ experiment to investigate nitrogen fixation (proxied by acetylene reduction) and dynamics of the microbial community (16S rRNA gene amplicon sequencing) and the nitrogen fixing community (nifH DNA/RNA amplicon sequencing) associated with decomposing Zostera marina leaves. The leaves harboured distinct microbial communities, including distinct nitrogen fixers, relative to the surrounding seawater and sediment throughout the experiment. Nitrogen fixation rates were measurable on most days, but highest on days 3 (dark, 334.8 nmol N g-1 dw h-1) and 15 (light, 194.6 nmol N g-1 dw h-1). Nitrogen fixation rates were not correlated with the concentration of inorganic nutrients in the surrounding seawater or with carbon:nitrogen ratios in the leaves. The composition of nitrogen fixers shifted from cyanobacterial Sphaerospermopsis to heterotrophic genera like Desulfopila over the decomposition period. On the days with highest fixation, nifH RNA gene transcripts were mainly accounted for by cyanobacteria, in particular by Sphaerospermopsis and an unknown taxon (order Nostocales), alongside Proteobacteria. Our study shows that seagrass debris in temperate coastal waters harbours substantial nitrogen fixation carried out by cyanobacteria and heterotrophic bacteria that are distinct relative to the surrounding seawater and sediments. This suggests that seagrass debris constitutes a selective environment where degradation is affected by the import of nitrogen via nitrogen fixation.


Asunto(s)
Microbiota , Fijación del Nitrógeno , Hojas de la Planta , Agua de Mar , Zosteraceae , Hojas de la Planta/microbiología , Agua de Mar/microbiología , Agua de Mar/química , Zosteraceae/microbiología , Zosteraceae/metabolismo , Nitrógeno/metabolismo , Nitrógeno/análisis , ARN Ribosómico 16S/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Dinamarca , Cianobacterias/metabolismo , Cianobacterias/genética , Cianobacterias/clasificación , Cianobacterias/aislamiento & purificación
3.
Sci Rep ; 14(1): 16121, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997303

RESUMEN

Microbiota imbalances are linked to inflammation and disease, as well as neurodevelopmental conditions where they may contribute to behavioral, physiological, and central nervous system dysfunction. By contrast, the role of the microbiota in Fetal Alcohol Spectrum Disorder (FASD), the group of neurodevelopmental conditions that can occur following prenatal alcohol exposure (PAE), has not received similar attention. Here we utilized a rodent model of alcohol consumption during pregnancy to characterize the impact of alcohol on the microbiota of dam-offspring dyads. Overall, bacterial diversity decreased in alcohol-consuming dams and community composition differed from that of controls in alcohol-consuming dams and their offspring. Bacterial taxa and predicted biochemical pathway composition were also altered with alcohol consumption/exposure; however, there was minimal overlap between the changes in dams and offspring. These findings illuminate the potential importance of the microbiota in the pathophysiology of FASD and support investigation into novel microbiota-based interventions.


Asunto(s)
Consumo de Bebidas Alcohólicas , Heces , Efectos Tardíos de la Exposición Prenatal , Animales , Embarazo , Femenino , Heces/microbiología , Consumo de Bebidas Alcohólicas/efectos adversos , Efectos Tardíos de la Exposición Prenatal/microbiología , Ratas , Trastornos del Espectro Alcohólico Fetal/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Etanol/efectos adversos , Masculino , Modelos Animales de Enfermedad , Microbiota/efectos de los fármacos , Bacterias/clasificación , Bacterias/efectos de los fármacos
4.
Environ Microbiol ; 26(2): e16582, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38195072

RESUMEN

Host-associated microbes influence host health and function and can be a first line of defence against infections. While research increasingly shows that terrestrial plant microbiomes contribute to bacterial, fungal, and oomycete disease resistance, no comparable experimental work has investigated marine plant microbiomes or more diverse disease agents. We test the hypothesis that the eelgrass (Zostera marina) leaf microbiome increases resistance to seagrass wasting disease. From field eelgrass with paired diseased and asymptomatic tissue, 16S rRNA gene amplicon sequencing revealed that bacterial composition and richness varied markedly between diseased and asymptomatic tissue in one of the two years. This suggests that the influence of disease on eelgrass microbial communities may vary with environmental conditions. We next experimentally reduced the eelgrass microbiome with antibiotics and bleach, then inoculated plants with Labyrinthula zosterae, the causative agent of wasting disease. We detected significantly higher disease severity in eelgrass with a native microbiome than an experimentally reduced microbiome. Our results over multiple experiments do not support a protective role of the eelgrass microbiome against L. zosterae. Further studies of these marine host-microbe-pathogen relationships may continue to show new relationships between plant microbiomes and diseases.


Asunto(s)
Microbiota , Estramenopilos , Zosteraceae , ARN Ribosómico 16S/genética , Estramenopilos/genética , Zosteraceae/genética , Zosteraceae/microbiología , Microbiota/genética , Hojas de la Planta/microbiología , Bacterias/genética
5.
Mol Ecol ; 33(1): e16862, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36786039

RESUMEN

Different host species associate with distinct gut microbes in mammals, a pattern sometimes referred to as phylosymbiosis. However, the processes shaping this host specificity are not well understood. One model proposes that barriers to microbial transmission promote specificity by limiting microbial dispersal between hosts. This model predicts that specificity levels measured across microbes is correlated to transmission mode (vertical vs. horizontal) and individual dispersal traits. Here, we leverage two large publicly available gut microbiota data sets (1490 samples from 195 host species) to test this prediction. We found that host specificity varies widely across bacteria (i.e., there are generalist and specialist bacteria) and depends on transmission mode and dispersal ability. Horizontally-like transmitted bacteria equipped with traits that facilitate switches between host (e.g., tolerance to oxygen) were found to be less specific (more generalist) than microbes without those traits, for example, vertically-like inherited bacteria that are intolerant to oxygen. Altogether, our findings are compatible with a model in which limited microbial dispersal abilities foster host specificity.


Asunto(s)
Microbioma Gastrointestinal , Animales , Mamíferos/microbiología , Especificidad del Huésped , Bacterias/genética , Oxígeno
6.
Microlife ; 4: uqad033, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680753

RESUMEN

Eukaryotes have historically been studied as parasites, but recent evidence suggests they may be indicators of a healthy gut ecosystem. Here, we describe the eukaryome along the gastrointestinal tract of children aged 2-5 years and test for associations with clinical factors such as anaemia, intestinal inflammation, chronic undernutrition, and age. Children were enrolled from December 2016 to May 2018 in Bangui, Central African Republic and Antananarivo, Madagascar. We analyzed a total of 1104 samples representing 212 gastric, 187 duodenal, and 705 fecal samples using a metabarcoding approach targeting the full ITS2 region for fungi, and the V4 hypervariable region of the 18S rRNA gene for the overall eukaryome. Roughly, half of all fecal samples showed microeukaryotic reads. We find high intersubject variability, only a handful of taxa that are likely residents of the gastrointestinal tract, and frequent co-occurrence of eukaryotes within an individual. We also find that the eukaryome differs between the stomach, duodenum, and feces and is strongly influenced by country of origin. Our data show trends towards higher levels of Fusarium equiseti, a mycotoxin producing fungus, and lower levels of the protist Blastocystis in stunted children compared to nonstunted controls. Overall, the eukaryome is poorly correlated with clinical variables. Our study is of one of the largest cohorts analyzing the human intestinal eukaryome to date and the first to compare the eukaryome across different compartments of the gastrointestinal tract. Our results highlight the importance of studying populations across the world to uncover common features of the eukaryome in health.

7.
J Phycol ; 59(3): 538-551, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37005360

RESUMEN

Kelp are important primary producers that are colonized by diverse microbes that can have both positive and negative effects on their hosts. The kelp microbiome could support the burgeoning kelp cultivation sector by improving host growth, stress tolerance, and resistance to disease. Fundamental questions about the cultivated kelp microbiome still need to be addressed before microbiome-based approaches can be developed. A critical knowledge gap is how cultivated kelp microbiomes change as hosts grow, particularly following outplanting to sites that vary in abiotic conditions and microbial source pools. In this study we assessed if microbes that colonize kelp in the nursery stage persist after outplanting. We characterized microbiome succession over time on two species of kelp, Alaria marginata and Saccharina latissima, outplanted to open ocean cultivation sites in multiple geographic locations. We tested for host-species specificity of the microbiome and the effect of different abiotic conditions and microbial source pools on kelp microbiome stability during the cultivation process. We found the microbiome of kelp in the nursery is distinct from that of outplanted kelp. Few bacteria persisted on kelp following outplanting. Instead, we identified significant microbiome differences correlated with host species and microbial source pools at each cultivation site. Microbiome variation related to sampling month also indicates that seasonality in host and/or abiotic factors may influence temporal succession and microbiome turnover in cultivated kelps. This study provides a baseline understanding of microbiome dynamics during kelp cultivation and highlights research needs for applying microbiome manipulation to kelp cultivation.


Asunto(s)
Kelp , Microbiota , Phaeophyceae , Bacterias
8.
FEMS Microbiol Ecol ; 99(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36690340

RESUMEN

Sea stars are keystone species and their mass die-offs due to sea star wasting disease (SSWD) impact marine communities and have fueled recent interest in the microbiome of sea stars. We assessed the host specificity of the microbiome associated with three body regions of the sea star Pisaster ochraceus using 16S rRNA gene amplicon surveys of the bacterial communities living on and in Pisaster, their environment, and sympatric marine hosts across three populations in British Columbia, Canada. Overall, the bacterial communities on Pisaster are distinct from their environment and differ by both body region and geography. We identified core bacteria specifically associated with Pisaster across populations and nearly absent in other hosts and the environment. We then investigated the distribution of these core bacteria on SSWD-affected Pisaster from one BC site and by reanalyzing a study of SSWD on Pisaster from California. We find no differences in the distribution of core bacteria in early disease at either site and two core taxa differ in relative abundance in advanced disease in California. Using phylogenetic analyses, we find that most core bacteria have close relatives on other sea stars and marine animals, suggesting these clades have evolutionary adaptions to an animal-associated lifestyle.


Asunto(s)
Microbiota , Síndrome Debilitante , Animales , Estrellas de Mar/microbiología , Filogenia , ARN Ribosómico 16S/genética
9.
Environ Microbiome ; 17(1): 55, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36384808

RESUMEN

BACKGROUND: Identifying meaningful ecological associations between host and components of the microbiome is challenging. This is especially true for hosts such as marine macroalgae where the taxonomic composition of the microbiome is highly diverse and variable in space and time. Identifying core taxa is one way forward but there are many methods and thresholds in use. This study leverages a large dataset of microbial communities associated with the widespread brown macroalga, Fucus distichus, across sites and years on one island in British Columbia, Canada. We compare three different methodological approaches to identify core taxa at the amplicon sequence variant (ASV) level from this dataset: (1) frequency analysis of taxa on F. distichus performed over the whole dataset, (2) indicator species analysis (IndVal) over the whole dataset that identifies frequent taxa that are enriched on F. distichus in comparison to the local environment, and (3) a two-step IndVal method that identifies taxa that are consistently enriched on F. distichus across sites and time points. We then investigated a F. distichus time-series dataset to see if those core taxa are seasonally consistent on another remote island in British Columbia, Canada. We then evaluate host-specificity of the identified F. distichus core ASVs using comparative data from 32 other macroalgal species sampled at one of the sites. RESULTS: We show that a handful of core ASVs are consistently identified by both frequency analysis and IndVal approaches with alternative definitions, although no ASVs were always present on F. distichus and IndVal identified a diverse array of F. distichus indicator taxa across sites on Calvert Island in multiple years. Frequency analysis captured a broader suit of taxa, while IndVal was better at identifying host-specific microbes. Finally, two-step IndVal identified hundreds of indicator ASVs for particular sites/timepoints but only 12 that were indicators in a majority (> 6 out of 11) of sites/timepoints. Ten of these ASVs were also indicators on Quadra Island, 250 km away. Many F. distichus-core ASVs are generally found on multiple macroalgal species, while a few ASVs are highly specific to F. distichus. CONCLUSIONS: Different methodological approaches with variable set thresholds influence core identification, but a handful of core taxa are apparently identifiable as they are widespread and temporally associated with F. distichus and enriched in comparison to the environment. Moreover, we show that many of these core ASVs of F. distichus are found on multiple macroalgal hosts, indicating that most occupy a macroalgal generalist niche rather than forming highly specialized associations with F. distichus. Further studies should test whether macroalgal generalists or specialists are more likely to engage in biologically important exchanges with host.

10.
Proc Natl Acad Sci U S A ; 119(41): e2209589119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36197997

RESUMEN

Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology. We performed a cross-sectional study in two African countries recruiting roughly 1,000 children aged 2 to 5 years and assessed the microbiota in the stomach, duodenum, and feces. Upper gastrointestinal samples were obtained from stunted children and stratified according to stunting severity. Fecal samples were collected. We then investigated the role of clinical isolates in EED pathophysiology using tissue culture and animal models. We find that small intestinal bacterial overgrowth (SIBO) is extremely common (>80%) in stunted children. SIBO is frequently characterized by an overgrowth of oral bacteria, leading to increased permeability and inflammation and to replacement of classical small intestinal strains. These duodenal bacterial isolates decrease lipid absorption in both cultured enterocytes and mice, providing a mechanism by which they may exacerbate EED and stunting. Further, we find a specific fecal signature associated with the EED markers fecal calprotectin and alpha-antitrypsin. Our study shows a causal implication of ectopic colonization of oral bacterial isolated from the small intestine in nutrient malabsorption and gut leakiness in vitro. These findings have important therapeutic implications for modulating the microbiota through microbiota-targeted interventions.


Asunto(s)
Microbioma Gastrointestinal , Trastornos del Crecimiento , Intestino Delgado , Lípidos , Boca , Animales , Bacterias , Preescolar , Estudios Transversales , Trastornos del Crecimiento/etiología , Humanos , Complejo de Antígeno L1 de Leucocito , Metabolismo de los Lípidos , Síndromes de Malabsorción , Ratones , Modelos Teóricos , Boca/microbiología
11.
Mol Ecol ; 31(19): 5107-5123, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35933734

RESUMEN

Zostera marina (seagrass) is a coastal marine angiosperm that sustains a diverse and productive ecosystem. Seagrass-associated microbiota support host health, yet the ecological processes that maintain biodiversity and stability of the seagrass leaf microbiota are poorly understood. We tested two hypotheses: (1) Microbes select seagrass leaves as habitat such that they consistently host distinct microbiota and/or core taxa in comparison to nearby substrates, and (2) seagrass leaf microbiota are stable once established and are resistant to change when transplanted to a novel environment. We reciprocally transplanted replicate seagrass shoots (natural and surface sterilized/dead tissue treatments) among four meadows with different environmental conditions and deployed artificial seagrass treatments in all four meadows. At the end of the 5-day experiment, the established microbiota on natural seagrass partially turned over to resemble microbial communities in the novel meadow, and all experimental treatments hosted distinct surface microbiota. We consistently found that natural and sterilized/dead seagrass hosted more methanol-utilizing bacteria compared to artificial seagrass and water, suggesting that seagrass core microbiota are shaped by taxa that metabolize seagrass exudates coupled with minor roles for host microbial defence and/or host-directed recruitment. We found evidence that the local environment strongly influenced the seagrass leaf microbiota in natural meadows and that transplant location explained more variation than experimental treatment. Transplanting resulted in high turnover and variability of the seagrass leaf microbiota, suggesting that it is flexibly assembled in a wide array of environmental conditions which may contribute to resilience of seagrass in future climate change scenarios.


Asunto(s)
Microbiota , Zosteraceae , Biodiversidad , Ecosistema , Metanol , Agua
12.
Trends Ecol Evol ; 37(7): 590-598, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35466020

RESUMEN

Our understanding of host influence on microbial evolution has focused on symbiont specialization and the genomic streamlining that often accompanies it. However, a vast diversity of symbiotic lineages facultatively interact with hosts or associate with multiple hosts. Yet, there are no clear expectations for how host association influences the niche of these symbionts or their evolution. Here, we discuss how weak or variable selection on microbial symbiotic associations, horizontal transmission, and low costs of adaptation to novel host habitats are predicted to promote the expansion or maintenance of microbial niches. This broad perspective will aid in developing better and more general predictions for evolution in microbial symbioses.


Asunto(s)
Simbiosis , Filogenia
13.
Alcohol Clin Exp Res ; 46(4): 542-555, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35102585

RESUMEN

BACKGROUND: There is growing evidence that the gut microbiota can be shaped by early-life experiences/exposures, with long-term consequences for brain, behavior, and health. Changes in the gut microbiota have also been identified in neurodevelopmental disorders including Autism Spectrum Disorder and schizophrenia. In contrast, no studies to date have investigated whether the gut microbiota is altered in individuals with Fetal Alcohol Spectrum Disorder (FASD), the neurodevelopmental disorder that results from prenatal alcohol exposure (PAE). The current study was designed to assess the impact of PAE on the fecal microbiota. METHODS: We used a rodent model in which pregnant Sprague-Dawley rats were provided with an EtOH-containing diet or a control diet throughout gestation. Fecal samples were collected from adult male and female animals and 16s rRNA sequencing was performed. RESULTS: Overall, PAE rats showed greater richness of bacterial species, with community structure investigations demonstrating distinct clustering by prenatal treatment. In addition, prenatal treatment and sex-specific alterations were observed for many specific microbes. For example, in males, Bacteroides and Bifidobacterium, and in females, Faecalitalea and Proteus, differed in abundance between PAE and control rats. CONCLUSIONS: Taken together, these results show for the first time that PAE has a long-lasting and sex-specific impact on the fecal microbiota. Further research is needed that considers fetal microbiota in the development of new interventions in FASD.


Asunto(s)
Trastorno del Espectro Autista , Trastornos del Espectro Alcohólico Fetal , Microbiota , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Masculino , Embarazo , ARN Ribosómico 16S/genética , Ratas , Ratas Sprague-Dawley
14.
PLoS Biol ; 19(8): e3001362, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34388158

RESUMEN

This Formal Comment provides clarifications on the authors' recent estimates of global bacterial diversity and the current status of the field, and responds to a Formal Comment from John Wiens regarding their prior work.


Asunto(s)
Biodiversidad
15.
mSphere ; 6(4): e0008321, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34406855

RESUMEN

An estimated 3.5 billion people are colonized by intestinal parasites worldwide. Intestinal parasitic eukaryotes interact not only with the host but also with the intestinal microbiota. In this work, we studied the relationship between the presence of multiple enteric parasites and the community structures of gut bacteria and eukaryotes in an asymptomatic mother-child cohort from a semirural community in Mexico. Fecal samples were collected from 46 mothers and their respective children, with ages ranging from 2 to 20 months. Mothers and infants were found to be multiparasitized by Blastocystis hominis, Entamoeba dispar, Endolimax nana, Chilomastix mesnili, Iodamoeba butshlii, Entamoeba coli, Hymenolepis nana, and Ascaris lumbricoides. Sequencing of bacterial 16S rRNA and eukaryotic 18S rRNA genes showed a significant effect of parasite exposure on bacterial beta-diversity, which explained between 5.2% and 15.0% of the variation of the bacterial community structure in the cohort. Additionally, exposure to parasites was associated with significant changes in the relative abundances of multiple bacterial taxa, characterized by an increase in Clostridiales and decreases in Actinobacteria and Bacteroidales. Parasite exposure was not associated with changes in intestinal eukaryote relative abundances. However, we found several significant positive correlations between intestinal bacteria and eukaryotes, including Oscillospira with Entamoeba coli and Prevotella stercorea with Entamoeba hartmanni, as well as the co-occurrence of the fungus Candida with Bacteroides and Actinomyces, Bifidobacterium, and Prevotella copri and the fungus Pichia with Oscillospira. The parasitic exposure-associated changes in the bacterial community structure suggest effects on microbial metabolic routes, host nutrient uptake abilities, and intestinal immunity regulation in host-parasite interactions. IMPORTANCE The impact of intestinal eukaryotes on the prokaryotic microbiome composition of asymptomatic carriers has not been extensively explored, especially in infants and mothers with multiple parasitic infections. In this work, we studied the relationship between protist and helminth parasite colonization and the intestinal microbiota structure in an asymptomatic population of mother-child binomials from a semirural community in Mexico. We found that the presence of parasitic eukaryotes correlated with changes in the bacterial gut community structure in the intestinal microbiota in an age-dependent way. Parasitic infection was associated with an increase in the relative abundance of the class Clostridia and decreases of Actinobacteria and Bacteroidia. Parasitic infection was not associated with changes in the eukaryote community structure. However, we observed strong positive correlations between bacterial and other eukaryote taxa, identifying novel relationships between prokaryotes and fungi reflecting interkingdom interactions within the human intestine.


Asunto(s)
Bacterias/genética , Heces/parasitología , Microbioma Gastrointestinal/genética , Helmintos/fisiología , Parasitosis Intestinales/epidemiología , Parásitos/fisiología , Adolescente , Adulto , Animales , Bacterias/clasificación , Estudios de Cohortes , Femenino , Microbioma Gastrointestinal/fisiología , Helmintos/genética , Interacciones Huésped-Parásitos , Humanos , Lactante , México/epidemiología , Persona de Mediana Edad , Modelos Estadísticos , Madres , Parásitos/clasificación , Parásitos/genética , ARN Ribosómico 16S/genética , Población Rural/estadística & datos numéricos , Adulto Joven
16.
Front Microbiol ; 12: 641483, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897648

RESUMEN

Protists are a normal component of mammalian intestinal ecosystems that live alongside, and interact with, bacterial microbiota. Blastocystis, one of the most common intestinal eukaryotes, is reported as a pathogen that causes inflammation and disease, though health consequences likely vary depending on host health, the gut ecosystem, and genetic diversity. Accumulating evidence suggests that Blastocystis is by and large commensal. Blastocystis is more common in healthy individuals than those with immune mediated diseases such as Inflammatory Bowel Diseases (IBD). Blastocystis presence is also associated with altered composition and higher richness of the bacterial gut microbiota. It is not clear whether Blastocystis directly promotes a healthy gut and microbiome or is more likely to colonize and persist in a healthy gut environment. We test this hypothesis by measuring the effect of Blastocystis ST3 colonization on the health and microbiota in a rat experimental model of intestinal inflammation using the haptenizing agent dinitrobenzene sulfonic acid (DNBS). We experimentally colonized rats with Blastocystis ST3 obtained from a healthy, asymptomatic human donor and then induced colitis after 3 weeks (short term exposure experiment) or after 13 weeks (long term exposure experiment) and compared these colonized rats to a colitis-only control group. Across experiments Blastocystis ST3 colonization alters microbiome composition, but not richness, and induces only mild gut inflammation but no clinical symptoms. Our results showed no effect of short-term exposure to Blastocystis ST3 on gut inflammation following colitis induction. In contrast, long-term Blastocystis exposure appears to promote a faster recovery from colitis. There was a significant reduction in inflammatory markers, pathology 2 days after colitis induction in the colonized group, and clinical scores also improved in this group. Blastocystis colonization resulted in a significant reduction in tumor necrosis factor alpha (TNFα) and IL-1ß relative gene expression, while expression of IFNγ and IL17re/17C were elevated. We obtained similar results in a previous pilot study. We further found that bacterial richness rebounded in rats colonized by Blastocystis ST3. These results suggest that Blastocystis sp. may alter the gut ecosystem in a protective manner and promote faster recovery from disturbance.

17.
Environ Microbiol ; 23(5): 2617-2631, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33817918

RESUMEN

It is unclear how host-associated microbial communities will be affected by future environmental change. Characterizing how microbiota differ across sites with varying environmental conditions and assessing the stability of the microbiota in response to abiotic variation are critical steps towards predicting outcomes of environmental change. Intertidal organisms are valuable study systems because they experience extreme variation in environmental conditions on tractable timescales such as tide cycles and across small spatial gradients in the intertidal zone. Here we show a widespread intertidal macroalgae, Fucus distichus, hosts site-specific microbiota over small (meters to kilometres) spatial scales. We demonstrate stability of site-specific microbial associations by manipulating the host environment and microbial species pool with common garden and reciprocal transplant experiments. We hypothesized that F. distichus microbiota would readily shift to reflect the contemporary environment due to selective filtering by abiotic conditions and/or colonization by microbes from the new environment or nearby hosts. Instead, F. distichus microbiota was stable for days after transplantation in both the laboratory and field. Our findings expand the current understanding of microbiota dynamics on an intertidal foundation species. These results may also point to adaptations for withstanding short-term environmental variation, in hosts and/or microbes, facilitating stable host-microbial associations.


Asunto(s)
Fucus , Microbiota , Algas Marinas , Adaptación Fisiológica
18.
J Phycol ; 57(4): 1119-1130, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33749821

RESUMEN

Seaweed-associated microbiota are essential for the health and resilience of nearshore ecosystems, marine biogeochemical cycling, and host health. Yet much remains unknown about the ecology of seaweed-microbe symbioses. In this study, we quantified fine-scale patterns of microbial community structure across distinct anatomical regions of the kelp Laminaria setchellii. These anatomical regions represent a gradient of tissue ages: perennial holdfasts can be several years old, whereas stipe epicortex and blades are younger annual structures. Within blades, new growth occurs at the base, while the blade tips may be several months old and undergoing senescence. We hypothesized that microbial communities will differ across anatomical regions (holdfast, stipe, blade base, and blade tip), such that younger tissues will harbor fewer microbes that are more consistent across replicate individuals. Our data support this hypothesis, with the composition of bacterial (16S rRNA gene) and microeukaryote (18S rRNA gene) communities showing significant differences across the four anatomical regions, with the surfaces of older tissues (holdfast and blade tips) harboring significantly greater microbial richness compared to the younger tissues of the meristematic region. Additional samples collected from the surfaces of new L. setchellii recruits (<1y old) also showed differences in microbial community structure across anatomical regions, which demonstrates that these microbial differences are established early. We also observed this pattern in two additional algal species, suggesting that microbial community structure across host anatomy may be a common feature of the seaweed microbiome.


Asunto(s)
Kelp , Laminaria , Microbiota , Bacterias/genética , ARN Ribosómico 16S/genética
19.
J Eukaryot Microbiol ; 68(1): e12827, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065761

RESUMEN

Epibiotic microorganisms link seagrass productivity to higher trophic levels, but little is known about the processes structuring these communities, and which taxa consistently associate with seagrass. We investigated epibiotic microeukaryotes on seagrass (Zostera marina) leaves, substrates, and planktonic microeukaryotes in ten meadows in the Northeast Pacific. Seagrass epibiotic communities are distinct from planktonic and substrate communities. We found sixteen core microeukaryotes, including dinoflagellates, diatoms, and saprotrophic stramenopiles. Some likely use seagrass leaves as a substrate, others for grazing, or they may be saprotrophic organisms involved in seagrass decomposition or parasites; their relatives have been previously reported from marine sediments and in association with other hosts such as seaweeds. Core microeukaryotes were spatially structured, and none were ubiquitous across meadows. Seagrass epibiota were more spatially structured than planktonic communities, mostly due to spatial distance and changes in abiotic conditions across space. Seawater communities were relatively more similar in composition across sites and more influenced by the environmental component, but more variable over time. Core and transient taxa were both mostly structured by spatial distance and the abiotic environment, with little effect of host attributes, further indicating that those core taxa would not show a strong specific association with Z. marina.


Asunto(s)
Diatomeas/fisiología , Dinoflagelados/fisiología , Microbiota , Plancton/fisiología , Estramenopilos/fisiología , Zosteraceae/microbiología , Colombia Británica
20.
ISME J ; 15(5): 1372-1386, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33349654

RESUMEN

Large eukaryotes support diverse communities of microbes on their surface-epibiota-that profoundly influence their biology. Alternate factors known to structure complex patterns of microbial diversity-host evolutionary history and ecology, environmental conditions and stochasticity-do not act independently and it is challenging to disentangle their relative effects. Here, we surveyed the epibiota from 38 sympatric seaweed species that span diverse clades and have convergent morphology, which strongly influences seaweed ecology. Host identity explains most of the variation in epibiont communities and deeper host phylogenetic relationships (e.g., genus level) explain a small but significant portion of epibiont community variation. Strikingly, epibiota community composition is significantly influenced by host morphology and epibiota richness increases with morphological complexity of the seaweed host. This effect is robust after controlling for phylogenetic non-independence and is strongest for crustose seaweeds. We experimentally validated the effect of host morphology by quantifying bacterial community assembly on latex sheets cut to resemble three seaweed morphologies. The patterns match those observed in our field survey. Thus, biodiversity increases with habitat complexity in host-associated microbial communities, mirroring patterns observed in animal communities. We suggest that host morphology and structural complexity are underexplored mechanisms structuring microbial communities.


Asunto(s)
Microbiota , Animales , Bacterias/genética , Biodiversidad , Ecología , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA