Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(21): e2218506120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192168

RESUMEN

Novel genes have the potential to drive the evolution of new biological mechanisms, or to integrate into preexisting regulatory circuits and contribute to the regulation of older, conserved biological functions. One such gene, the novel insect-specific gene oskar, was first identified based on its role in establishing the Drosophila melanogaster germ line. We previously showed that this gene likely arose through an unusual domain transfer event involving bacterial endosymbionts and played a somatic role before evolving its well-known germ line function. Here, we provide empirical support for this hypothesis in the form of evidence for a neural role for oskar. We show that oskar is expressed in the adult neural stem cells of a hemimetabolous insect, the cricket Gryllus bimaculatus. In these stem cells, called neuroblasts, oskar is required together with the ancient animal transcription factor Creb to regulate long-term (but not short-term) olfactory memory. We provide evidence that oskar positively regulates Creb, which plays a conserved role in long-term memory across animals, and that oskar in turn may be a direct target of Creb. Together with previous reports of a role for oskar in nervous system development and function in crickets and flies, our results are consistent with the hypothesis that oskar's original somatic role may have been in the insect nervous system. Moreover, its colocalization and functional cooperation with the conserved pluripotency gene piwi in the nervous system may have facilitated oskar's later co-option to the germ line in holometabolous insects.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Factores de Transcripción/genética , Células Germinativas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Insectos/genética , Memoria a Largo Plazo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
Dev Cell ; 56(18): 2623-2635.e5, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34547226

RESUMEN

piRNAs guide Piwi/Panoramix-dependent H3K9me3 chromatin modification and transposon silencing during Drosophila germline development. The THO RNA export complex is composed of Hpr1, Tho2, and Thoc5-7. Null thoc7 mutations, which displace Thoc5 and Thoc6 from a Tho2-Hpr1 subcomplex, reduce expression of a subset of germline piRNAs and increase transposon expression, suggesting that THO silences transposons by promoting piRNA biogenesis. Here, we show that the thoc7-null mutant combination increases transposon transcription but does not reduce anti-sense piRNAs targeting half of the transcriptionally activated transposon families. These mutations also fail to reduce piRNA-guided H3K9me3 chromatin modification or block Panoramix-dependent silencing of a reporter transgene, and unspliced transposon transcripts co-precipitate with THO through a Piwi- and Panoramix-independent mechanism. Mutations in piwi also dominantly enhance germline defects associated with thoc7-null alleles. THO thus functions in a piRNA-independent transposon-silencing pathway, which acts cooperatively with Piwi to support germline development.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Silenciador del Gen/fisiología , Proteínas Nucleares/metabolismo , ARN Interferente Pequeño/genética , Animales , Proteínas Argonautas/genética , Núcleo Celular/metabolismo , Elementos Transponibles de ADN/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo
3.
Cell Rep ; 30(8): 2672-2685.e5, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32101744

RESUMEN

In Drosophila, transposon-silencing piRNAs are derived from heterochromatic clusters and a subset of euchromatic transposon insertions, which are bound by the Rhino-Deadlock-Cutoff complex. The HP1 homolog Rhino binds to Deadlock, which recruits TRF2 to promote non-canonical transcription from both genomic strands. Cuff function is less well understood, but this Rai1 homolog shows hallmarks of adaptive evolution, which can remodel functional interactions within host defense systems. Supporting this hypothesis, Drosophila simulans Cutoff is a dominant-negative allele when expressed in Drosophila melanogaster, in which it traps Deadlock, TRF2, and the conserved transcriptional co-repressor CtBP in stable complexes. Cutoff functions with Rhino and Deadlock to drive non-canonical transcription. In contrast, CtBP suppresses canonical transcription of transposons and promoters flanking the major germline clusters, and canonical transcription interferes with downstream non-canonical transcription and piRNA production. Adaptive evolution thus targets interactions among Cutoff, TRF2, and CtBP that balance canonical and non-canonical piRNA precursor transcription.


Asunto(s)
Drosophila/genética , Redes Reguladoras de Genes , ARN Interferente Pequeño/metabolismo , Alelos , Animales , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/metabolismo , Genes Dominantes , Modelos Biológicos , Mutación/genética , Factores de Transcripción/metabolismo , Transcripción Genética
4.
Open Biol ; 9(1): 180181, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30958115

RESUMEN

Transposons are major genome constituents that can mobilize and trigger mutations, DNA breaks and chromosome rearrangements. Transposon silencing is particularly important in the germline, which is dedicated to transmission of the inherited genome. Piwi-interacting RNAs (piRNAs) guide a host defence system that transcriptionally and post-transcriptionally silences transposons during germline development. While germline control of transposons by the piRNA pathway is conserved, many piRNA pathway genes are evolving rapidly under positive selection, and the piRNA biogenesis machinery shows remarkable phylogenetic diversity. Conservation of core function combined with rapid gene evolution is characteristic of a host-pathogen arms race, suggesting that transposons and the piRNA pathway are engaged in an evolutionary tug of war that is driving divergence of the biogenesis machinery. Recent studies suggest that this process may produce biochemical incompatibilities that contribute to reproductive isolation and species divergence.


Asunto(s)
Evolución Molecular , Silenciador del Gen , ARN Interferente Pequeño/genética , Transducción de Señal/genética , Animales , Elementos Transponibles de ADN/genética , Variación Genética , Humanos , Modelos Genéticos , Selección Genética
5.
Cell Rep ; 24(13): 3413-3422.e4, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257203

RESUMEN

In Drosophila, the piRNAs that guide germline transposon silencing are produced from heterochromatic clusters marked by the HP1 homolog Rhino. We show that Rhino promotes cluster transcript association with UAP56 and the THO complex, forming RNA-protein assemblies that are unique to piRNA precursors. UAP56 and THO are ubiquitous RNA-processing factors, and null alleles of uap56 and the THO subunit gene tho2 are lethal. However, uap56sz15 and mutations in the THO subunit genes thoc5 and thoc7 are viable but sterile and disrupt piRNA biogenesis. The uap56sz15 allele reduces UAP56 binding to THO, and the thoc5 and thoc7 mutations disrupt interactions among the remaining THO subunits and UAP56 binding to the core THO subunit Hpr1. These mutations also reduce Rhino binding to clusters and trigger Rhino binding to ectopic sites across the genome. Rhino thus promotes assembly of piRNA precursor complexes, and these complexes restrict Rhino at cluster heterochromatin.


Asunto(s)
Heterocromatina/metabolismo , ARN Interferente Pequeño/metabolismo , Animales , Sitios de Unión , Proteínas Cromosómicas no Histona/metabolismo , ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Heterocromatina/genética , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética
6.
EMBO Rep ; 19(7)2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29858487

RESUMEN

PIWI-interacting RNAs (piRNAs) silence transposons in germ cells to maintain genome stability and animal fertility. Rhino, a rapidly evolving heterochromatin protein 1 (HP1) family protein, binds Deadlock in a species-specific manner and so defines the piRNA-producing loci in the Drosophila genome. Here, we determine the crystal structures of Rhino-Deadlock complex in Drosophila melanogaster and simulans In both species, one Rhino binds the N-terminal helix-hairpin-helix motif of one Deadlock protein through a novel interface formed by the beta-sheet in the Rhino chromoshadow domain. Disrupting the interface leads to infertility and transposon hyperactivation in flies. Our structural and functional experiments indicate that electrostatic repulsion at the interaction interface causes cross-species incompatibility between the sibling species. By determining the molecular architecture of this piRNA-producing machinery, we discover a novel HP1-partner interacting mode that is crucial to piRNA biogenesis and transposon silencing. We thus explain the cross-species incompatibility of two sibling species at the molecular level.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas de Drosophila/química , Proteínas Asociadas a Microtúbulos/química , Complejos Multiproteicos/química , ARN Interferente Pequeño/genética , Animales , Proteínas Cromosómicas no Histona/genética , Cristalografía por Rayos X , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma de los Insectos/genética , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/genética , ARN Interferente Pequeño/química , Especificidad de la Especie
7.
Dev Cell ; 43(1): 60-70.e5, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28919205

RESUMEN

Reproductive isolation defines species divergence and is linked to adaptive evolution of hybrid incompatibility genes. Hybrids between Drosophila melanogaster and Drosophila simulans are sterile, and phenocopy mutations in the PIWI interacting RNA (piRNA) pathway, which silences transposons and shows pervasive adaptive evolution, and Drosophila rhino and deadlock encode rapidly evolving components of a complex that binds to piRNA clusters. We show that Rhino and Deadlock interact and co-localize in simulans and melanogaster, but simulans Rhino does not bind melanogaster Deadlock, due to substitutions in the rapidly evolving Shadow domain. Significantly, a chimera expressing the simulans Shadow domain in a melanogaster Rhino backbone fails to support piRNA production, disrupts binding to piRNA clusters, and leads to ectopic localization to bulk heterochromatin. Fusing melanogaster Deadlock to simulans Rhino, by contrast, restores localization to clusters. Deadlock binding thus directs Rhino to piRNA clusters, and Rhino-Deadlock co-evolution has produced cross-species incompatibilities, which may contribute to reproductive isolation.


Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila melanogaster/metabolismo , Silenciador del Gen/fisiología , ARN Interferente Pequeño/genética , Animales , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Heterocromatina/metabolismo , Fenotipo , Aislamiento Reproductivo
8.
Biochem Biophys Res Commun ; 472(1): 189-93, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26923072

RESUMEN

The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in l-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico/biosíntesis , Calmodulina/metabolismo , Dineínas Citoplasmáticas/genética , Transporte de Electrón , Inhibidores Enzimáticos/metabolismo , Hemo/metabolismo , Humanos , Técnicas In Vitro , Cinética , NADP/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Oxidación-Reducción , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Cell ; 157(6): 1353-1363, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24906152

RESUMEN

piRNAs guide an adaptive genome defense system that silences transposons during germline development. The Drosophila HP1 homolog Rhino is required for germline piRNA production. We show that Rhino binds specifically to the heterochromatic clusters that produce piRNA precursors, and that binding directly correlates with piRNA production. Rhino colocalizes to germline nuclear foci with Rai1/DXO-related protein Cuff and the DEAD box protein UAP56, which are also required for germline piRNA production. RNA sequencing indicates that most cluster transcripts are not spliced and that rhino, cuff, and uap56 mutations increase expression of spliced cluster transcripts over 100-fold. LacI::Rhino fusion protein binding suppresses splicing of a reporter transgene and is sufficient to trigger piRNA production from a trans combination of sense and antisense reporters. We therefore propose that Rhino anchors a nuclear complex that suppresses cluster transcript splicing and speculate that stalled splicing differentiates piRNA precursors from mRNAs.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Drosophila/metabolismo , Empalme del ARN , ARN Interferente Pequeño/genética , Animales , ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Ovario/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción SOXD/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA