Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 11(6)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35740123

RESUMEN

Efflux pumps in Gram-negative bacteria such as Pseudomonas aeruginosa provide intrinsic antimicrobial resistance by facilitating the extrusion of a wide range of antimicrobials. Approaches for combating efflux-mediated multidrug resistance involve, in part, developing indirect antimicrobial agents capable of inhibiting efflux, thus rescuing the activity of antimicrobials previously rendered inactive by efflux. Herein, TXA09155 is presented as a novel efflux pump inhibitor (EPI) formed by conformationally constraining our previously reported EPI TXA01182. TXA09155 demonstrates strong potentiation in combination with multiple antibiotics with efflux liabilities against wild-type and multidrug-resistant (MDR) P. aeruginosa. At 6.25 µg/mL, TXA09155, showed ≥8-fold potentiation of levofloxacin, moxifloxacin, doxycycline, minocycline, cefpirome, chloramphenicol, and cotrimoxazole. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA09155. TXA09155 was determined to lower the frequency of resistance (FoR) to levofloxacin and enhance the killing kinetics of moxifloxacin. Most importantly, TXA09155 outperformed the levofloxacin-potentiation activity of EPIs TXA01182 and MC-04,124 against a CDC/FDA panel of MDR clinical isolates of P. aeruginosa. TXA09155 possesses favorable physiochemical and ADME properties that warrant its optimization and further development.

2.
Antibiotics (Basel) ; 11(5)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35625337

RESUMEN

The emergence of multi-drug-resistant Gram-negative pathogens highlights an urgent clinical need to explore and develop new antibiotics with novel antibacterial targets. MreB is a promising antibacterial target that functions as an essential elongasome protein in most Gram-negative bacterial rods. Here, we describe a third-generation MreB inhibitor (TXH11106) with enhanced bactericidal activity versus the Gram-negative pathogens Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa compared to the first- and second-generation compounds A22 and CBR-4830, respectively. Large inocula of these four pathogens are associated with a low frequency of resistance (FOR) to TXH11106. The enhanced bactericidal activity of TXH11106 relative to A22 and CBR-4830 correlates with a correspondingly enhanced capacity to inhibit E. coli MreB ATPase activity via a noncompetitive mechanism. Morphological changes induced by TXH11106 in E. coli, K. pneumoniae, A. baumannii, and P. aeruginosa provide further evidence supporting MreB as the bactericidal target of the compound. Taken together, our results highlight the potential of TXH11106 as an MreB inhibitor with activity against a broad spectrum of Gram-negative bacterial pathogens of acute clinical importance.

3.
J Antibiot (Tokyo) ; 75(7): 385-395, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35618784

RESUMEN

FtsZ inhibitors represent a new drug class as no drugs using this mode of action (MOA) have been approved by regulators. 3-alkoxy substituted 2,6-difluorobenzamide scaffold is one of the most studied FtsZ inhibitors among which the most promising anti-MRSA candidate TXA709 is in clinical trial. In this paper, we present the screening and evaluation of a benzamide class that is functionalized at the alkoxy fragment targeting Gram-negative bacteria. The variations in 3-alkoxy substitutions, specifically the hydroxylated alkyl residues to the secondary and stereogenic pseudo-benzylic carbon of their methyleneoxy linker, are particularly active against K. pneumoniae ATCC 10031 in marked contrast to the derivatives related to PC190723, all of which were inactive against Gram-negative bacteria. The two lead molecules TXA6101 and TXY6129 inhibit the polymerization of E. coli FtsZ in a concentration-dependent manner and induce changes in the morphology of E. coli and K. pneumoniae consistent with inhibition of cell division. These classes of compounds, however, were found to be substrates for efflux pumps in Gram-negative bacteria.


Asunto(s)
Proteínas del Citoesqueleto , Escherichia coli , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Benzamidas/química , Benzamidas/farmacología , Proteínas del Citoesqueleto/química , Klebsiella pneumoniae
4.
Med Chem Res ; 31(10): 1705-1715, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37065467

RESUMEN

Oxacillin is a first-line antibiotic for the treatment of methicillin-sensitive Staphylococcus aureus (MSSA) infections but is ineffective against methicillin-resistant S. aureus (MRSA) due to resistance. Here we present results showing that co-administering oxacillin with the FtsZ-targeting prodrug TXA709 renders oxacillin efficacious against MRSA. The combination of oxacillin and the active product of TXA709 (TXA707) is associated with synergistic bactericidal activity against clinical isolates of MRSA that are resistant to current standard-of-care antibiotics. We show that MRSA cells treated with oxacillin in combination with TXA707 exhibit morphological characteristics and PBP2 mislocalization behavior similar to that exhibited by MSSA cells treated with oxacillin alone. Co-administration with TXA709 renders oxacillin efficacious in mouse models of both systemic and tissue infection with MRSA, with this efficacy being observed at human-equivalent doses of oxacillin well below that recommended for daily adult use. Pharmacokinetic evaluations in mice reveal that co-administration with TXA709 also increases total exposure to oxacillin. Viewed as a whole, our results highlight the clinical potential of repurposing oxacillin to treat MRSA infections through combination with a FtsZ inhibitor.

5.
Med Chem Res ; 31(10): 1679-1704, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37077288

RESUMEN

MreB is a cytoskeleton protein present in rod-shaped bacteria that is both essential for bacterial cell division and highly conserved. Because most Gram (-) bacteria require MreB for cell division, chromosome segregation, cell wall morphogenesis, and cell polarity, it is an attractive target for antibacterial drug discovery. As MreB modulation is not associated with the activity of antibiotics in clinical use, acquired resistance to MreB inhibitors is also unlikely. Compounds, such as A22 and CBR-4830, are known to disrupt MreB function by inhibition of ATPase activity. However, the toxicity of these compounds has hindered efforts to assess the in vivo efficacy of these MreB inhibitors. The present study further examines the structure-activity of analogs related to CBR-4830 as it relates to relative antibiotic activity and improved drug properties. These data reveal that certain analogs have enhanced antibiotic activity. In addition, we evaluated several representative analogs (9, 10, 14, 26, and 31) for their abilities to target purified E. coli MreB (EcMreB) and inhibit its ATPase activity. Except for 14, all these analogs were more potent than CBR-4830 as inhibitors of the ATPase activity of EcMreB with corresponding IC50 values ranging from 6 ± 2 to 29 ± 9 µM.

6.
Antibiotics (Basel) ; 11(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35052908

RESUMEN

The ability to rescue the activity of antimicrobials that are no longer effective against bacterial pathogens such as Pseudomonas aeruginosa is an attractive strategy to combat antimicrobial drug resistance. Herein, novel efflux pump inhibitors (EPIs) demonstrating strong potentiation in combination with levofloxacin against wild-type P. aeruginosa ATCC 27853 are presented. A structure activity relationship of aryl substituted heterocyclic carboxamides containing a pentane diamine side chain is described. Out of several classes of fused heterocyclic carboxamides, aryl indole carboxamide compound 6j (TXA01182) at 6.25 µg/mL showed 8-fold potentiation of levofloxacin. TXA01182 was found to have equally synergistic activities with other antimicrobial classes (monobactam, fluoroquinolones, sulfonamide and tetracyclines) against P. aeruginosa. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA01182. TXA01182 was determined to lower the frequency of resistance (FoR) of the partner antimicrobials and enhance the killing kinetics of levofloxacin. Furthermore, TXA01182 demonstrated a synergistic effect with levofloxacin against several multidrug resistant P. aeruginosa clinical isolates.

8.
Eur J Med Chem ; 178: 30-38, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31173969

RESUMEN

Several studies that have identified agents that potentiate the antimicrobial activity of antibiotics, but there are limited insights into their structure-activity relationships (SAR). The SAR associated with select N-alkylaryl amide derivatives of ornithine was performed to establish those structural features that were associated with potentiation of the antimicrobial activity of clarithromycin against E. coli ATCC 25922. The data indicate that the N-propyl derivative was slightly more active in reducing the effective MIC of clarithromycin against E. coli ATCC 25922. In addition, the S-enantiomer of compound 9 was somewhat more potent than the R-enantiomer in potentiating clarithromycin activity. No significant enhancement in potentiation activity was observed with the conversion of these secondary amides to their N-methyl tertiary amides. Formation of the N-methyl or N,N-dimethyl derivatives of the primary amine of 9 was associated with the loss of potentiation activity. Conversion of this primary amine to a guanidine was also not associated with an increase in potentiation activity. Among the isomeric diamino pentamides, 15 potentiated the antibacterial activity of clarithromycin to the greatest extent. In addition to these amide derivatives, the desoxy derivatives 16 and 18 were the more potent potentiators within this triamine series. The relative location of the primary amines, as indicated by the relative differences in the potentiation observed with 16 compared to 14, appears to be a critical factor in determining potentiation activity. Cell-based membrane permeabilization and efflux inhibition studies in E. coli ATCC 25922 suggest that the potentiation of clarithromycin activity by 16 reflects its ability to inhibit efflux pump activity and to a lesser extent its actions as a permeabilizer of the outer leaflet of the outer cell membrane.


Asunto(s)
Amidas/farmacología , Antibacterianos/farmacología , Claritromicina/farmacología , Escherichia coli/efectos de los fármacos , Ornitina/farmacología , Amidas/síntesis química , Amidas/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Sinergismo Farmacológico , Proteínas de Transporte de Membrana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Ornitina/análogos & derivados , Ornitina/síntesis química , Relación Estructura-Actividad
9.
ACS Chem Biol ; 12(7): 1947-1955, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28621933

RESUMEN

In the effort to combat antibiotic resistance, inhibitors of the essential bacterial protein FtsZ have emerged as a promising new class of compounds with clinical potential. One such FtsZ inhibitor (TXA707) is associated with potent activity against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) that are resistant to current standard-of-care antibiotics. However, mutations in S. aureus FtsZ (SaFtsZ) that confer resistance to TXA707 have been observed, with mutations in the Gly196 and Gly193 residues being among the most prevalent. Here, we describe structural studies of an FtsZ inhibitor, TXA6101, which retains activity against MRSA isolates that express either G196S or G193D mutant FtsZ. We present the crystal structures of TXA6101 in complex with both wild-type SaFtsZ and G196S mutant SaFtsZ, as well the crystal structure of TXA707 in complex with wild-type SaFtsZ. Comparison of the three structures reveals a molecular basis for the differential targeting abilities of TXA6101 and TXA707. The greater structural flexibility of TXA6101 relative to TXA707 enables TXA6101 to avoid steric clashes with Ser196 and Asp193. Our structures also demonstrate that the binding of TXA6101 induces previously unobserved conformational rearrangements of SaFtsZ residues in the binding pocket. In aggregate, the structures reported in this work reveal key factors for overcoming drug resistance mutations in SaFtsZ and offer a structural basis for the design of FtsZ inhibitors with enhanced antibacterial potency and reduced susceptibility to mutational resistance.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Resistencia a Medicamentos/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Mutación , Antibacterianos/química , Antibacterianos/farmacología , Cristalografía por Rayos X , Modelos Moleculares
10.
Artículo en Inglés | MEDLINE | ID: mdl-28630190

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a multidrug-resistant pathogen that poses a significant risk to global health today. We have developed a promising new FtsZ-targeting agent (TXA707) with potent activity against MRSA isolates resistant to current standard-of-care antibiotics. We present here results that demonstrate differing extents of synergy between TXA707 and a broad range of ß-lactam antibiotics (including six cephalosporins, two penicillins, and two carbapenems) against MRSA. To explore whether there is a correlation between the extent of synergy and the preferential antibacterial target of each ß-lactam, we determined the binding affinities of the ß-lactam antibiotics for each of the four native penicillin-binding proteins (PBPs) of S. aureus using a fluorescence anisotropy competition assay. A comparison of the resulting PBP binding affinities with our corresponding synergy results reveals that ß-lactams with a high affinity for PBP2 afford the greatest degree of synergy with TXA707 against MRSA. In addition, we present fluorescence and electron microscopy studies that suggest a potential mechanism underlying the synergy between TXA707 and the ß-lactam antibiotics. In this connection, our microscopy results show a disruption of septum formation in TXA707-treated MRSA cells, with a concomitant mislocalization of the PBPs from midcell to nonproductive peripheral sites. Viewed as a whole, our results indicate that PBP2-targeting ß-lactam antibiotics are optimal synergistic partners with FtsZ-targeting agents for use in combination therapy of MRSA infections.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Proteínas de Unión a las Penicilinas/metabolismo , beta-Lactamas/farmacología , Meticilina/farmacología , Resistencia a la Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/metabolismo , Pruebas de Sensibilidad Microbiana/métodos
11.
Antimicrob Agents Chemother ; 60(7): 4290-6, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27161635

RESUMEN

Combination therapy of bacterial infections with synergistic drug partners offers distinct advantages over monotherapy. Among these advantages are (i) a reduction of the drug dose required for efficacy, (ii) a reduced potential for drug-induced toxicity, and (iii) a reduced potential for the emergence of resistance. Here, we describe the synergistic actions of the third-generation oral cephalosporin cefdinir and TXA709, a new, FtsZ-targeting prodrug that we have developed with improved pharmacokinetics and enhanced in vivo efficacy against methicillin-resistant Staphylococcus aureus (MRSA) relative to earlier agents. We show that the active product of TXA709 (TXA707) acts synergistically with cefdinir in vitro against clinical isolates of MRSA, vancomycin-intermediate S. aureus (VISA), vancomycin-resistant S. aureus (VRSA), and linezolid-resistant S. aureus (LRSA). In addition, relative to TXA707 alone, the combination of TXA707 and cefdinir significantly reduces or eliminates the detectable emergence of resistance. We also demonstrate synergy in vivo with oral administration of the prodrug TXA709 and cefdinir in mouse models of both systemic and tissue (thigh) infections with MRSA. This synergy reduces the dose of TXA709 required for efficacy 3-fold. Viewed as a whole, our results highlight the potential of TXA709 and cefdinir as a promising combination for the treatment of drug-resistant staphylococcal infections.


Asunto(s)
Cefalosporinas/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Profármacos/farmacología , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Cefdinir , Proteínas del Citoesqueleto/metabolismo , Sinergismo Farmacológico , Linezolid/farmacología , Meticilina/farmacología , Resistencia a la Meticilina/genética , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo , Vancomicina/farmacología , Resistencia a la Vancomicina/genética
12.
Antimicrob Agents Chemother ; 59(8): 4845-55, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26033735

RESUMEN

The clinical development of FtsZ-targeting benzamide compounds like PC190723 has been limited by poor drug-like and pharmacokinetic properties. Development of prodrugs of PC190723 (e.g., TXY541) resulted in enhanced pharmaceutical properties, which, in turn, led to improved intravenous efficacy as well as the first demonstration of oral efficacy in vivo against both methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Despite being efficacious in vivo, TXY541 still suffered from suboptimal pharmacokinetics and the requirement of high efficacious doses. We describe here the design of a new prodrug (TXA709) in which the Cl group on the pyridyl ring has been replaced with a CF3 functionality that is resistant to metabolic attack. As a result of this enhanced metabolic stability, the product of the TXA709 prodrug (TXA707) is associated with improved pharmacokinetic properties (a 6.5-fold-longer half-life and a 3-fold-greater oral bioavailability) and superior in vivo antistaphylococcal efficacy relative to PC190723. We validate FtsZ as the antibacterial target of TXA707 and demonstrate that the compound retains potent bactericidal activity against S. aureus strains resistant to the current standard-of-care drugs vancomycin, daptomycin, and linezolid. These collective properties, coupled with minimal observed toxicity to mammalian cells, establish the prodrug TXA709 as an antistaphylococcal agent worthy of clinical development.


Asunto(s)
Proteínas Bacterianas/metabolismo , Benzamidas/farmacología , Benzamidas/farmacocinética , Proteínas del Citoesqueleto/metabolismo , Resistencia a la Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Profármacos/farmacología , Profármacos/farmacocinética , Animales , Antibacterianos/farmacocinética , Antibacterianos/farmacología , Células Cultivadas , Daptomicina/farmacología , Perros , Semivida , Humanos , Linezolid/farmacología , Meticilina/farmacología , Staphylococcus aureus Resistente a Meticilina/metabolismo , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana/métodos , Piridinas/farmacología , Ratas , Infecciones Estafilocócicas/tratamiento farmacológico , Tiazoles/farmacología , Vancomicina/farmacología
13.
Biochem Pharmacol ; 89(3): 321-8, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24637241

RESUMEN

Infections caused by Gram-negative bacterial pathogens are often difficult to treat, with the emergence of multidrug-resistant strains further restricting clinical treatment options. As a result, there is an acute need for the development of new therapeutic agents active against Gram-negative bacteria. The bacterial protein FtsZ has recently been demonstrated to be a viable antibacterial target for treating infections caused by the Gram-positive bacteria Staphylococcus aureus in mouse model systems. Here, we investigate whether an FtsZ-directed prodrug (TXY436) that is effective against S. aureus can also target Gram-negative bacteria, such as Escherichia coli. We find that the conversion product of TXY436 (PC190723) can bind E. coli FtsZ and inhibit its polymerization/bundling in vitro. However, PC190723 is intrinsically inactive against wild-type E. coli, with this inactivity being derived from the actions of the efflux pump AcrAB. Mutations in E. coli AcrAB render the mutant bacteria susceptible to TXY436. We further show that chemical inhibition of AcrAB in E. coli, as well as its homologs in Klebsiella pneumoniae and Acinetobacter baumannii, confers all three Gram-negative pathogens with susceptibility to TXY436. We demonstrate that the activity of TXY436 against E. coli and K. pneumoniae is bactericidal in nature. Evidence for FtsZ-targeting and inhibition of cell division in Gram-negative bacteria by TXY436 is provided by the induction of a characteristic filamentous morphology when the efflux pump has been inhibited as well as by the lack of functional Z-rings upon TXY436 treatment.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Benzamidas/farmacología , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/efectos de los fármacos , Profármacos , Piridinas/farmacología , Tiazoles/farmacología , Proteínas de Unión al GTP rho/antagonistas & inhibidores , Animales , Antibacterianos/química , Benzamidas/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Piridinas/química , Tiazoles/química , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
14.
Biochem Pharmacol ; 86(12): 1699-707, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24148278

RESUMEN

The benzamide derivative PC190723 was among the first of a promising new class of FtsZ-directed antibacterial agents to be identified that exhibit potent antistaphylococcal activity. However, the compound is associated with poor drug-like properties. As part of an ongoing effort to develop FtsZ-targeting antibacterial agents with increased potential for clinical utility, we describe herein the pharmacodynamics, pharmacokinetics, in vivo antistaphylococcal efficacy, and mammalian cytotoxicity of TXY541, a novel 1-methylpiperidine-4-carboxamide prodrug of PC190723. TXY541 was found to be 143-times more soluble than PC190723 in an aqueous acidic vehicle (10mM citrate, pH 2.6) suitable for both oral and intravenous in vivo administration. In staphylococcal growth media, TXY541 converts to PC190723 with a half-life of approximately 8h. In 100% mouse serum, the TXY541-to-PC190723 conversion was much more rapid (with a half-life of approximately 3min), suggesting that the conversion of the prodrug in serum is predominantly enzyme-catalyzed. Pharmacokinetic analysis of both orally and intravenously administered TXY541 in mice yielded a half-life for the PC190723 conversion product of 0.56h and an oral bioavailability of 29.6%. Whether administered orally or intravenously, TXY541 was found to be efficacious in vivo in mouse models of systemic infection with both methicillin-sensitive and methicillin-resistant S. aureus. Toxicological assessment of TXY541 against mammalian cells revealed minimal detectable cytotoxicity. The results presented here highlight TXY541 as a potential therapeutic agent that warrants further pre-clinical development.


Asunto(s)
Antibacterianos/farmacología , Compuestos Heterocíclicos con 2 Anillos/farmacología , Imidas/farmacología , Profármacos/farmacología , Piridinas/farmacología , Staphylococcus/efectos de los fármacos , Tiazoles/farmacología , Animales , Antibacterianos/farmacocinética , Femenino , Compuestos Heterocíclicos con 2 Anillos/farmacocinética , Imidas/farmacocinética , Ratones , Pruebas de Sensibilidad Microbiana , Profármacos/farmacocinética , Piridinas/farmacocinética , Tiazoles/farmacocinética
15.
Antimicrob Agents Chemother ; 57(12): 5860-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24041882

RESUMEN

The bacterial cell division protein FtsZ represents a novel antibiotic target that has yet to be exploited clinically. The benzamide PC190723 was among the first FtsZ-targeting compounds to exhibit in vivo efficacy in a murine infection model system. Despite its initial promise, the poor formulation properties of the compound have limited its potential for clinical development. We describe here the development of an N-Mannich base derivative of PC190723 with enhanced drug-like properties and oral in vivo efficacy. The N-Mannich base derivative (TXY436) is ∼100-fold more soluble than PC190723 in an acidic aqueous vehicle (10 mM citrate, pH 2.6) suitable for oral in vivo administration. At physiological pH (7.4), TXY436 acts as a prodrug, converting to PC190723 with a conversion half-life of 18.2 ± 1.6 min. Pharmacokinetic analysis following intravenous administration of TXY436 into mice yielded elimination half-lives of 0.26 and 0.96 h for the TXY436 prodrug and its PC190723 product, respectively. In addition, TXY436 was found to be orally bioavailable and associated with significant extravascular distribution. Using a mouse model of systemic infection with methicillin-sensitive Staphylococcus aureus or methicillin-resistant S. aureus, we show that TXY436 is efficacious in vivo upon oral administration. In contrast, the oral administration of PC190723 was not efficacious. Mammalian cytotoxicity studies of TXY436 using Vero cells revealed an absence of toxicity up to compound concentrations at least 64 times greater than those associated with antistaphylococcal activity. These collective properties make TXY436 a worthy candidate for further investigation as a clinically useful agent for the treatment of staphylococcal infections.


Asunto(s)
Antibacterianos/farmacocinética , Proteínas Bacterianas/antagonistas & inhibidores , Benzamidas/farmacocinética , Proteínas del Citoesqueleto/antagonistas & inhibidores , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Profármacos/farmacocinética , Piridinas/farmacocinética , Infecciones Estafilocócicas/tratamiento farmacológico , Tiazoles/farmacocinética , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Benzamidas/metabolismo , Benzamidas/farmacología , Disponibilidad Biológica , Biotransformación , Chlorocebus aethiops , Proteínas del Citoesqueleto/metabolismo , Femenino , Semivida , Masculino , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Profármacos/metabolismo , Profármacos/farmacología , Piridinas/metabolismo , Piridinas/farmacología , Infecciones Estafilocócicas/microbiología , Tiazoles/metabolismo , Tiazoles/farmacología , Células Vero
16.
Bioorg Med Chem ; 21(21): 6435-46, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24055080

RESUMEN

Inhibition of the endonuclease activity of influenza RNA-dependent RNA polymerase is recognized as an attractive target for the development of new agents for the treatment of influenza infection. Our earlier study employing small molecule fragment screening using a high-resolution crystal form of pandemic 2009 H1N1 influenza A endonuclease domain (PAN) resulted in the identification of 5-chloro-3-hydroxypyridin-2(1H)-one as a bimetal chelating ligand at the active site of the enzyme. In the present study, several phenyl substituted 3-hydroxypyridin-2(1H)-one compounds were synthesized and evaluated for their ability to inhibit the endonuclease activity as measured by a high-throughput fluorescence assay. Two of the more potent compounds in this series, 16 and 18, had IC50 values of 11 and 23nM in the enzymatic assay, respectively. Crystal structures revealed that these compounds had distinct binding modes that chelate the two active site metal ions (M1 and M2) using only two chelating groups. The SAR and the binding mode of these 3-hydroxypyridin-2-ones provide a basis for developing a new class of anti-influenza drugs.


Asunto(s)
Endonucleasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Subtipo H1N1 del Virus de la Influenza A/enzimología , Piridonas/química , Sitios de Unión , Dominio Catalítico , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Endonucleasas/genética , Endonucleasas/metabolismo , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/toxicidad , Células HEK293 , Humanos , Unión Proteica , Piridonas/síntesis química , Piridonas/toxicidad , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Relación Estructura-Actividad
17.
ACS Chem Biol ; 8(11): 2501-8, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23978130

RESUMEN

Seasonal and pandemic influenza viruses continue to be a leading global health concern. Emerging resistance to the current drugs and the variable efficacy of vaccines underscore the need for developing new flu drugs that will be broadly effective against wild-type and drug-resistant influenza strains. Here, we report the discovery and development of a class of inhibitors targeting the cap-snatching endonuclease activity of the viral polymerase. A high-resolution crystal form of pandemic 2009 H1N1 influenza polymerase acidic protein N-terminal endonuclease domain (PAN) was engineered and used for fragment screening leading to the identification of new chemical scaffolds binding to the PAN active site cleft. During the course of screening, binding of a third metal ion that is potentially relevant to endonuclease activity was detected in the active site cleft of PAN in the presence of a fragment. Using structure-based optimization, we developed a highly potent hydroxypyridinone series of compounds from a fragment hit that defines a new mode of chelation to the active site metal ions. A compound from the series demonstrating promising enzymatic inhibition in a fluorescence-based enzyme assay with an IC50 value of 11 nM was found to have an antiviral activity (EC50) of 11 µM against PR8 H1N1 influenza A in MDCK cells.


Asunto(s)
Endonucleasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Orthomyxoviridae/enzimología , Antivirales/química , Antivirales/farmacología , Bioensayo , Dominio Catalítico , Células Cultivadas , Quelantes/química , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora
18.
Bioorg Med Chem Lett ; 23(17): 4968-74, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23891185

RESUMEN

Several phenyl substituted naphthalenes and isoquinolines have been identified as antibacterial agents that inhibit FtsZ-Zing formation. In the present study we evaluated the antibacterial of several phenyl substituted quinoxalines, quinazolines and 1,5-naphthyridines against methicillin-sensitive and methicillin-resistant Staphylococcusaureus and vancomycin-sensitive and vancomycin-resistant Enterococcusfaecalis. Some of the more active compounds against S. aureus were evaluated for their effect on FtsZ protein polymerization. Further studies were also performed to assess their relative bactericidal and bacteriostatic activities. The notable differences observed between nonquaternized and quaternized quinoxaline derivatives suggest that differing mechanisms of action are associated with their antibacterial properties.


Asunto(s)
Antibacterianos/farmacología , Enterococcus faecalis/efectos de los fármacos , Naftiridinas/farmacología , Quinazolinas/farmacología , Quinoxalinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Farmacorresistencia Bacteriana , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Humanos , Resistencia a la Meticilina , Pruebas de Sensibilidad Microbiana , Naftiridinas/química , Quinazolinas/química , Quinoxalinas/química , Infecciones Estafilocócicas/tratamiento farmacológico , Vancomicina/farmacología
19.
Biochimie ; 95(10): 1880-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23806423

RESUMEN

New antibiotics with novel mechanisms of action are urgently needed to overcome the growing bacterial resistance problem faced by clinicians today. PC190723 and related compounds represent a promising new class of antibacterial compounds that target the essential bacterial cell division protein FtsZ. While this family of compounds exhibits potent antistaphylococcal activity, they have poor activity against enterococci and streptococci. The studies described herein are aimed at investigating the molecular basis of the enterococcal and streptococcal resistance to this family of compounds. We show that the poor activity of the compounds against enterococci and streptococci correlates with a correspondingly weak impact of the compounds on the self-polymerization of the FtsZ proteins from those bacteria. In addition, computational and mutational studies identify two key FtsZ residues (E34 and R308) as being important determinants of enterococcal and streptococcal resistance to the PC190723-type class of compounds.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas del Citoesqueleto/genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Piridinas/farmacología , Staphylococcus aureus/efectos de los fármacos , Tiazoles/farmacología , Secuencia de Aminoácidos , Antibacterianos/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mutación , Multimerización de Proteína , Piridinas/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Tiazoles/química
20.
J Med Chem ; 55(22): 10160-76, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23050700

RESUMEN

The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4'-(tert-butyl)-[1,1'-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Compuestos de Bifenilo/farmacología , Proteínas del Citoesqueleto/metabolismo , Enterococcus/efectos de los fármacos , Guanidinas/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Polimerizacion/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Resistencia a la Vancomicina/efectos de los fármacos , Antibacterianos/síntesis química , Compuestos de Bifenilo/síntesis química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Guanidinas/síntesis química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA