Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Physiol ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146457

RESUMEN

Ischaemia-reperfusion (IR)-associated acute kidney injury (AKI) is a severe clinical condition that lacks effective pharmacological treatments. Our recent research revealed that pretreatment with the angiotensin II type 2 receptor (AT2R) agonist C21 alleviates kidney damage during IR. Primary cilia are organelles crucial for regulation of epithelial cell homeostasis, which are significantly affected by IR injury. This study aimed to evaluate the impact of AT2R activation on cilia integrity during IR and to identify pathways involved in the nephroprotective effect of C21. Rats were subjected to 40 min of unilateral ischaemia followed by 24 h of reperfusion. Immunofluorescence analysis of the kidneys showed that the nephroprotective effect of C21 was associated with preservation of cilia integrity in tubular cells. AT2R agonists increased α-tubulin acetylation in primary cilia in tubular cells in vivo and in a cell model. Analysis of ERK phosphorylation indicated that AT2R activation led to diminished activation of ERK1/2 in tubular cells. Similar to AT2R agonists, inhibitors of α-tubulin deacetylase HDAC6 or inhibitors of ERK activation ameliorated IR-induced cell death and preserved cilia integrity. Immunofluorescence analysis of tubular cells revealed significant ERK localization at primary cilia and demonstrated that ERK inhibition increased cilia levels of acetylated α-tubulin. Overall, our findings demonstrate that C21 elicits a preconditioning effect that enhances cilia stability in renal tubular cells, thereby preserving their integrity when exposed to IR injury. Furthermore, our results indicate that this effect might be mediated by AT2R-induced inhibition of ERK activation. These findings offer potential insights for the development of pharmacological interventions to mitigate IR-associated AKI. KEY POINTS: The AT2R agonist C21 prevents primary cilia shortening and tubular cell deciliation during renal ischaemia-reperfusion. AT2R activation inhibits ERK1/2 in renal tubular cells. Both AT2R agonists and ERK1/2 inhibitors increase alpha-tubulin acetylation at the primary cilium in tubular cells. AT2R activation, ERK1/2 inhibition or inhibition of alpha-tubulin deacetylation elicit protective effects in tubular cells subjected to ischaemia-reperfusion injury.

2.
J Cell Physiol ; 238(1): 227-241, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477412

RESUMEN

The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Sinapsis Inmunológicas , Células Asesinas Naturales , Antígeno-1 Asociado a Función de Linfocito , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Centrosoma/metabolismo , Citotoxicidad Inmunológica , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Células Asesinas Naturales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA