Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(8): 11349-11370, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38180651

RESUMEN

The uncontrolled discharge of industry- and consumer-derived micropollutants and synthetic contaminants into freshwater bodies represents a severe threat to human health and aquatic ecosystem. Inexpensive and highly efficient wastewater treatment methods are, therefore, urgently required to eliminate such non-biodegradable, recalcitrant, and toxic organic pollutants. In this context, advanced oxidation processes, particularly heterogenous photocatalysis, have received enormous attention over the past few decades. Among the different classes of photocatalysts explored by the scientific community, heterojunction photocatalysts, in general, and binary heterojunction photocatalysts, in particular, have shown tremendous promise, attributed to their many distinct advantages. As such, the present review highlights the application of diverse array of binary heterojunction photocatalysts for eliminating water-borne contaminants. Specifically, a bibliometric analysis has been conducted to identify the ongoing research trend and future prospects of heterojunction photocatalysts. It appears that metal oxide/metal oxide-based heterojunctions have superior thermal and mechanical stability compared to other heterojunction photocatalysts. In contrast, metal oxide/non-metal semiconductor-based heterojunctions are extremely effective in pollutant degradation without significant leaching of metal ions. The review concludes by proposing novel strategic research guidelines in order to make further advances in this rapidly evolving cross-disciplinary field of topical interest.


Asunto(s)
Líquidos Corporales , Contaminantes Ambientales , Humanos , Ecosistema , Bibliometría , Óxidos
2.
Langmuir ; 39(51): 18846-18865, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38095629

RESUMEN

Retrieving the spent photocatalysts from the reaction system is always a challenging task. Therefore, the present work is focused on immobilizing sulfur-doped-Bi2O3/MnO2 (S-BOMO) heterojunction photocatalysts over different support matrices and evaluating their performance for the removal of sulfamethoxazole (SMX) in water under visible light. Our findings revealed S-BOMO coated clay beads (S-BOMO CCB) achieving more than 86% (240 min) SMX degradation ∼3, ∼1.3, and ∼2 times higher compared to S-BOMO coated on the different substrates, including glass beads, floating stones, and polymer material substrates, respectively. Mott-Schottky measurements confirmed the construction of the Z-scheme heterojunction involving MnO2 and 2S-Bi2O3. This Z-scheme mechanism, along with its narrow band gap of 1.58 eV, resulted in a rapid spatial transfer of the photogenerated charge carriers between the semiconductors and is believed to enhance the overall photocatalytic activity of the nanocomposite. Radical trapping and electron paramagnetic resonance results clearly established the active role of hydroxyl radicals and hydrogen peroxide in the degradation of SMX. Further, the 2S-BOMO CCB demonstrated excellent stability and photocatalytic activity over multiple runs. According to the sensitivity analysis and the results of anion effect experiments, phosphate and sulfate ions exhibit a significant impact on sulfamethoxazole degradation. Toxicity analysis revealed that 2S-BOMO CCB and sulfamethoxazole degradation byproducts were apparently innocuous. Additionally, the practical applicability of 2S-BOMO CCB was examined in various real water matrices, with the degradation efficiency followed the order: tap water < groundwater < surface water < hospital wastewater < municipal wastewater < pharmaceutical industry wastewater. The economic assessment revealed the reduction in the overall cost of the immobilized 2S-BOMO following the recovery process. Overall, the findings of this work provided critical insights into the synthesis and performance of incredibly effective and stable immobilized photocatalysts for the degradation of pharmaceutical pollutants.

3.
Chemosphere ; 327: 138503, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36965534

RESUMEN

In early January 2020, the causal agent of unspecified pneumonia cases detected in China and elsewhere was identified as a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was the major cause of the COVID-19 outbreak. Later, the World Health Organization (WHO) proclaimed the COVID-19 pandemic a worldwide public health emergency on January 30, 2020. Since then, many studies have been published on this topic. In the present study, bibliometric analysis has been performed to analyze the research hotspots of the coronavirus. Coronavirus transmission, detection methods, potential risks of infection, and effective management practices have been discussed in the present review. Identification and quantification of SARS-CoV-2 viral loads in various water matrices have been reviewed. It was observed that the viral shedding through urine and feces of COVID-19-infected patients might be a primary mode of SARS-CoV-2 transmission in water and wastewater. In this context, the present review highlights wastewater-based epidemiology (WBE)/sewage surveillance, which can be utilized as an effective tool for tracking the transmission of COVID-19. This review also emphasizes the role of different disinfection techniques, such as chlorination, ultraviolet irradiation, and ozonation, for the inactivation of coronavirus. In addition, the application of computational modeling methods has been discussed for the effective management of COVID-19.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Monitoreo Epidemiológico Basado en Aguas Residuales , Pandemias/prevención & control , Aguas Residuales
4.
J Environ Manage ; 308: 114609, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35101807

RESUMEN

Hospitals release significant quantities of wastewater (HWW) and biomedical waste (BMW), which hosts a wide range of contaminants that can adversely affect the environment if left untreated. The COVID-19 outbreak has further increased hospital waste generation over the past two years. In this context, a thorough literature study was carried out to reveal the negative implications of untreated hospital waste and delineate the proper ways to handle them. Conventional treatment methods can remove only 50%-70% of the emerging contaminants (ECs) present in the HWW. Still, many countries have not implemented suitable treatment methods to treat the HWW in-situ. This review presents an overview of worldwide HWW generation, regulations, and guidelines on HWW management and highlights the various treatment techniques for efficiently removing ECs from HWW. When combined with advanced oxidation processes, biological or physical treatment processes could remove around 90% of ECs. Analgesics were found to be more easily removed than antibiotics, ß-blockers, and X-ray contrast media. The different environmental implications of BMW have also been highlighted. Mishandling of BMW can spread infections, deadly diseases, and hazardous waste into the environment. Hence, the different steps associated with collection to final disposal of BMW have been delineated to minimize the associated health risks. The paper circumscribes the multiple aspects of efficient hospital waste management and may be instrumental during the COVID-19 pandemic when the waste generation from all hospitals worldwide has increased significantly.


Asunto(s)
COVID-19 , Eliminación de Residuos Sanitarios , Hospitales , Humanos , Eliminación de Residuos Sanitarios/métodos , Pandemias , Medición de Riesgo , SARS-CoV-2 , Aguas Residuales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...