Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 18: 1359874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808028

RESUMEN

The caudolateral nidopallium (NCL, an analog of the prefrontal cortex) is known to be involved in learning, memory, and discrimination in corvids (a songbird), whereas the involvement of other brain regions in these phenomena is not well explored. We used house crows (Corvus splendens) to explore the neural correlates of learning and decision-making by initially training them on a shape discrimination task followed by immunohistochemistry to study the immediate early gene expression (Arc), a dopaminoceptive neuronal marker (DARPP-32, Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa) to understand the involvement of the reward pathway and an immature neuronal marker (DCX, doublecortin) to detect learning-induced changes in adult neurogenesis. We performed neuronal counts and neuronal tracing, followed by morphometric analyses. Our present results have demonstrated that besides NCL, other parts of the caudal nidopallium (NC), avian basal ganglia, and intriguingly, vocal control regions in house crows are involved in visual discrimination. We have also found that training on the visual discrimination task can be correlated with neurite pruning in mature dopaminoceptive neurons and immature DCX-positive neurons in the NC of house crows. Furthermore, there is an increase in the incorporation of new neurons throughout NC and the medial striatum which can also be linked to learning. For the first time, our results demonstrate that a combination of structural changes in mature and immature neurons and adult neurogenesis are linked to learning in corvids.

2.
PLoS One ; 16(8): e0256599, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34464410

RESUMEN

The endogenous opioid system is evolutionarily conserved across reptiles, birds and mammals and is known to modulate varied brain functions such as learning, memory, cognition and reward. To date, most of the behavioral and anatomical studies in songbirds have mainly focused on µ-opioid receptors (ORs). Expression patterns of δ-ORs in zebra finches, a well-studied species of songbird have not yet been reported, possibly due to the high sequence similarity amongst different opioid receptors. In the present study, a specific riboprobe against the δ-OR mRNA was used to perform fluorescence in situ hybridization (FISH) on sections from the male zebra finch brain. We found that δ-OR mRNA was expressed in different parts of the pallium, basal ganglia, cerebellum and the hippocampus. Amongst the song control and auditory nuclei, HVC (abbreviation used as a formal name) and NIf (nucleus interfacialis nidopallii) strongly express δ-OR mRNA and stand out from the surrounding nidopallium. Whereas the expression of δ-OR mRNA is moderate in LMAN (lateral magnocellular nucleus of the anterior nidopallium), it is low in the MSt (medial striatum), Area X, DLM (dorsolateral nucleus of the medial thalamus), RA (robust nucleus of the arcopallium) of the song control circuit and Field L, Ov (nucleus ovoidalis) and MLd (nucleus mesencephalicus lateralis, pars dorsalis) of the auditory pathway. Our results suggest that δ-ORs may be involved in modulating singing, song learning as well as spatial learning in zebra finches.


Asunto(s)
Encéfalo/metabolismo , Pinzones/metabolismo , Receptores Opioides delta/metabolismo , Animales , Ganglios Basales/metabolismo , Cerebelo/metabolismo , Pinzones/fisiología , Hipocampo/metabolismo , Hibridación Fluorescente in Situ , Masculino , ARN Mensajero/metabolismo , Receptores Opioides delta/fisiología , Vocalización Animal/fisiología
3.
Front Psychol ; 12: 637850, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33935888

RESUMEN

Earlier evidence suggests that besides humans, some species of mammals and birds demonstrate visual self-recognition, assessed by the controversial "mark" test. Whereas, there are high levels of inter-individual differences amongst a single species, some species such as macaques and pigeons which do not spontaneously demonstrate mirror self-recognition (MSR) can be trained to do so. We were surprised to discover that despite being widely used as a model system for avian research, the performance of zebra finches (Taenopygia guttata) on the mark test had not been studied earlier. Additionally, we studied the behavioral responses of another species of passerine songbirds (Indian house crows; Corvus splendens) to a mirror and the MSR mark test. Although a small number of adult male zebra finches appeared to display heightened responses toward the mark while observing their reflections, we could not rule out the possibility that these were a part of general grooming rather than specific to the mark. Furthermore, none of the house crows demonstrated mark-directed behavior or increased self-exploratory behaviors when facing mirrors. Our study suggests that self-directed behaviors need to be tested more rigorously in adult male zebra finches while facing their reflections and these findings need to be replicated in a larger population, given the high degree of variability in mirror-directed behaviors.

4.
J Comp Neurol ; 527(11): 1801-1836, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30697741

RESUMEN

Birds of the family Corvidae which includes diverse species such as crows, rooks, ravens, magpies, jays, and jackdaws are known for their amazing abilities at problem-solving. Since the catecholaminergic system, especially the neurotransmitter dopamine, plays a role in cognition, we decided to study the distribution of tyrosine hydroxylase (TH), the rate-limiting enzyme in the synthesis of catecholamines in the brain of house crows (Corvus splendens). We also studied the expression of DARPP-32 (dopamine and cAMP-regulated phosphoprotein), which is expressed in dopaminoceptive neurons. Our results demonstrated that as in other avian species, the expression of both TH and DARPP-32 was highest in the house crow striatum. The caudolateral nidopallium (NCL, the avian analogue of the mammalian prefrontal cortex) could be differentiated from the surrounding pallial regions based on a larger number of TH-positive "baskets" of fibers around neurons in this region and greater intensity of DARPP-32 staining in the neuropil in this region. House crows also possessed distinct nuclei in their brains which corresponded to song control regions in other songbirds. Whereas immunoreactivity for TH was higher in the vocal control region Area X compared to the surrounding MSt (medial striatum) in house crows, staining in RA and HVC was not as prominent. Furthermore, the arcopallial song control regions RA (nucleus robustus arcopallialis) and AId (intermediate arcopallium) were strikingly negative for DARPP-32 staining, in contrast to the surrounding arcopallium. Patterns of immunoreactivity for TH and DARPP-32 in "limbic" areas such as the hippocampus, septum, and extended amygdala have also been described.


Asunto(s)
Encéfalo/metabolismo , Cuervos/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Animales , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA