Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(18): 5513-5520, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38634689

RESUMEN

P-type self-doping is known to hamper tin-based perovskites for developing high-performance solar cells by increasing the background current density and carrier recombination processes. In this work, we propose a gradient homojunction structure with germanium doping that generates an internal electric field across the perovskite film to deplete the charge carriers. This structure reduces the dark current density of perovskite by over 2 orders of magnitude and trap density by an order of magnitude. The resultant tin-based perovskite solar cells exhibit a higher power conversion efficiency of 13.3% and excellent stability, maintaining 95% and 85% of their initial efficiencies after 250 min of continuous illumination and 3800 h of storage, respectively. We reveal the homojunction formation mechanism using density functional theory calculations and molecular level characterizations. Our work provides a reliable strategy for controlling the spatial energy levels in tin perovskite films and offers insights into designing intriguing lead-free perovskite optoelectronics.

2.
J Am Chem Soc ; 146(7): 4687-4694, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324275

RESUMEN

The optical response of two-dimensional (2D) perovskites, often referred to as natural quantum wells, is primarily governed by excitons, whose properties can be readily tuned by adjusting the perovskite layer thickness. We have investigated the exciton fine structure splitting in the archetypal 2D perovskite (PEA)2(MA)n-1PbnI3n+1 with varying numbers of inorganic octahedral layers n = 1, 2, 3, and 4. We demonstrate that the in-plane excitonic states exhibit splitting and orthogonally oriented dipoles for all confinement regimes. The evolution of the exciton states in an external magnetic field provides further insights into the g-factors and diamagnetic coefficients. With increasing n, we observe a gradual evolution of the excitonic parameters characteristic of a 2D to three-dimensional transition. Our results provide valuable information concerning the evolution of the optoelectronic properties of 2D perovskites with the changing confinement strength.

3.
Angew Chem Int Ed Engl ; 63(8): e202316733, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38170453

RESUMEN

Heavy-metal-free III-V colloidal quantum dots (CQDs) are promising materials for solution-processed short-wave infrared (SWIR) photodetectors. Recent progress in the synthesis of indium antimonide (InSb) CQDs with sizes smaller than the Bohr exciton radius enables quantum-size effect tuning of the band gap. However, it has been challenging to achieve uniform InSb CQDs with band gaps below 0.9 eV, as well as to control the surface chemistry of these large-diameter CQDs. This has, to date, limited the development of InSb CQD photodetectors that are sensitive to ≥ ${\ge }$ 1400 nm light. Here we adopt solvent engineering to facilitate a diffusion-limited growth regime, leading to uniform CQDs with a band gap of 0.89 eV. We then develop a CQD surface reconstruction strategy that employs a dicarboxylic acid to selectively remove the native In/Sb oxides, and enables a carboxylate-halide co-passivation with the subsequent halide ligand exchange. We find that this strategy reduces trap density by half compared to controls, and enables electronic coupling among CQDs. Photodetectors made using the tailored CQDs achieve an external quantum efficiency of 25 % at 1400 nm, the highest among III-V CQD photodetectors in this spectral region.

4.
Sci Adv ; 9(33): eadg4417, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37585532

RESUMEN

Layered hybrid perovskites exhibit emergent physical properties and exceptional functional performances, but the coexistence of lattice order and structural disorder severely hinders our understanding of these materials. One unsolved problem regards how the lattice dynamics are affected by the dimensional engineering of the inorganic frameworks and their interaction with the molecular moieties. Here, we address this question by using a combination of spontaneous Raman scattering, terahertz spectroscopy, and molecular dynamics simulations. This approach reveals the structural dynamics in and out of equilibrium and provides unexpected observables that differentiate single- and double-layered perovskites. While no distinct vibrational coherence is observed in double-layered perovskites, an off-resonant terahertz pulse can drive a long-lived coherent phonon mode in the single-layered system. This difference highlights the dramatic change in the lattice environment as the dimension is reduced, and the findings pave the way for ultrafast structural engineering and high-speed optical modulators based on layered perovskites.

5.
Adv Mater ; 35(45): e2303528, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37450343

RESUMEN

Addition of aqueous hydrohalic acids during the synthesis of colloidal quantum dots (QDs) is widely employed to achieve high-quality QDs. However, this reliance on the use of aqueous solutions is incompatible with oxygen- and water-sensitive precursors such as those used in the synthesis of Te-alloyed ZnSe QDs. Herein, it is shown that this incompatibility leads to phase segregation into Te-rich and Te-poor regions, causing spectral broadening and luminescence peak shifting under high laser irradiation and applied electrical bias. Here, a synthetic strategy to produce anhydrous-HF in situ by using benzenecarbonyl fluoride (BF) as a chemical additive is reported. Through in situ 19 F NMR spectroscopy, it is found that BF reacts with surfactants in tandem, ultimately producing intermediary F···H···trioctylamine adducts. These act as a pseudo-HF source that releases anhydrous HF. The controlled release of HF during nucleation and growth steps homogenizes Te distribution in ZnSeTe lattice, leading to spectrally stable blue-emitting QDs under increasing laser flux from ≈3 µW to ≈12 mW and applied bias from 2.6 to 10 V. Single-dot photoluminescence (PL) spectroscopy and analyses of the absorption, PL and transient absorption spectra together with density functional theory point to the role of anhydrous HF as a Te homogenizer.

6.
Nanomaterials (Basel) ; 13(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36986013

RESUMEN

Two-dimensional van der Waals materials exhibit particularly strong excitonic effects, which causes them to be an exceptionally interesting platform for the investigation of exciton physics. A notable example is the two-dimensional Ruddlesden-Popper perovskites, where quantum and dielectric confinement together with soft, polar, and low symmetry lattice create a unique background for electron and hole interaction. Here, with the use of polarization-resolved optical spectroscopy, we have demonstrated that the simultaneous presence of tightly bound excitons, together with strong exciton-phonon coupling, allows for observing the exciton fine structure splitting of the phonon-assisted transitions of two-dimensional perovskite (PEA)2PbI4, where PEA stands for phenylethylammonium. We demonstrate that the phonon-assisted sidebands characteristic for (PEA)2PbI4 are split and linearly polarized, mimicking the characteristics of the corresponding zero-phonon lines. Interestingly, the splitting of differently polarized phonon-assisted transitions can be different from that of the zero-phonon lines. We attribute this effect to the selective coupling of linearly polarized exciton states to non-degenerate phonon modes of different symmetries resulting from the low symmetry of (PEA)2PbI4 lattice.

7.
J Am Chem Soc ; 145(9): 5183-5190, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36811999

RESUMEN

Organic-inorganic hybrid materials present new opportunities for creating low-dimensional structures with unique light-matter interaction. In this work, we report a chemically robust yellow emissive one-dimensional (1D) semiconductor, silver 2,6-difluorophenylselenolate─AgSePhF2(2,6), a new member of the broader class of hybrid low-dimensional semiconductors, metal-organic chalcogenolates. While silver phenylselenolate (AgSePh) crystallizes as a two-dimensional (2D) van der Waals semiconductor, introduction of fluorine atoms at the (2,6) position of the phenyl ring induces a structural transition from 2D sheets to 1D chains. Density functional theory calculations reveal that AgSePhF2 (2,6) has strongly dispersive conduction and valence bands along the 1D crystal axis. Visible photoluminescence centered around λp ≈ 570 nm at room temperature exhibits both prompt (110 ps) and delayed (36 ns) components. The absorption spectrum exhibits excitonic resonances characteristic of low-dimensional hybrid semiconductors, with an exciton binding energy of approximately 170 meV as determined by temperature-dependent photoluminescence. The discovery of an emissive 1D silver organoselenolate highlights the structural and compositional richness of the chalcogenolate material family and provides new insights for molecular engineering of low-dimensional hybrid organic-inorganic semiconductors.

8.
ACS Nano ; 16(12): 20318-20328, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36416726

RESUMEN

Silver phenylselenolate (AgSePh, also known as "mithrene") and silver phenyltellurolate (AgTePh, also known as "tethrene") are two-dimensional (2D) van der Waals semiconductors belonging to an emerging class of hybrid organic-inorganic materials called metal-organic chalcogenolates. Despite having the same crystal structure, AgSePh and AgTePh exhibit a strikingly different excitonic behavior. Whereas AgSePh exhibits narrow, fast luminescence with a minimal Stokes shift, AgTePh exhibits comparatively slow luminescence that is significantly broadened and red-shifted from its absorption minimum. Using time-resolved and temperature-dependent absorption and emission microspectroscopy, combined with subgap photoexcitation studies, we show that exciton dynamics in AgTePh films are dominated by an intrinsic self-trapping behavior, whereas dynamics in AgSePh films are dominated by the interaction of band-edge excitons with a finite number of extrinsic defect/trap states. Density functional theory calculations reveal that AgSePh has simple parabolic band edges with a direct gap at Γ, whereas AgTePh has a saddle point at Γ with a horizontal splitting along the Γ-N1 direction. The correlation between the unique band structure of AgTePh and exciton self-trapping behavior is unclear, prompting further exploration of excitonic phenomena in this emerging class of hybrid 2D semiconductors.

9.
J Phys Chem Lett ; 13(20): 4463-4469, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35561248

RESUMEN

Applications of two-dimensional (2D) perovskites have significantly outpaced the understanding of many fundamental aspects of their photophysics. The optical response of 2D lead halide perovskites is dominated by strongly bound excitonic states. However, a comprehensive experimental verification of the exciton fine structure splitting and associated transition symmetries remains elusive. Here we employ low temperature magneto-optical spectroscopy to reveal the exciton fine structure of (PEA)2PbI4 (here PEA is phenylethylammonium) single crystals. We observe two orthogonally polarized bright in-plane free exciton (FX) states, both accompanied by a manifold of phonon-dressed states that preserve the polarization of the corresponding FX state. Introducing a magnetic field perpendicular to the 2D plane, we resolve the lowest energy dark exciton state, which although theoretically predicted, has systematically escaped experimental observation (in Faraday configuration) until now. These results corroborate standard multiband, effective-mass theories for the exciton fine structure in 2D perovskites and provide valuable quantification of the fine structure splitting in (PEA)2PbI4.

10.
ACS Nano ; 16(2): 2054-2065, 2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35098708

RESUMEN

Silver phenylselenolate (AgSePh) is a hybrid organic-inorganic two-dimensional (2D) semiconductor exhibiting narrow blue emission, in-plane anisotropy, and large exciton binding energy. Here, we show that the addition of carefully chosen solvent vapors during the chemical transformation of metallic silver to AgSePh allows for control over the size and orientation of AgSePh crystals. By testing 28 solvent vapors (with different polarities, boiling points, and functional groups), we controlled the resulting crystal size from <200 nm up to a few µm. Furthermore, choice of solvent vapor can substantially improve the orientational homogeneity of 2D crystals with respect to the substrate. In particular, solvents known to form complexes with silver ions, such as dimethyl sulfoxide (DMSO), led to the largest lateral crystal dimensions and parallel crystal orientation. We perform systematic optical and electrical characterizations on DMSO vapor-grown AgSePh films demonstrating improved crystalline quality, lower defect densities, higher photoconductivity, lower dark conductivity, suppression of ionic migration, and reduced midgap photoluminescence at low temperature. Overall, this work provides a strategy for realizing AgSePh films with improved optical properties and reveals the roles of solvent vapors on the chemical transformation of metallic silver.

11.
J Am Chem Soc ; 143(48): 20256-20263, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34806381

RESUMEN

The use of two-dimensional (2D) materials in next-generation technologies is often limited by small lateral size and/or crystal defects. Here, we introduce a simple chemical strategy to improve the size and overall quality of 2D metal-organic chalcogenolates (MOCs), a new class of hybrid organic-inorganic 2D semiconductors that can exhibit in-plane anisotropy and blue luminescence. By inducing the formation of silver-amine complexes during a solution growth method, we increase the average size of silver phenylselenolate (AgSePh) microcrystals from <5 µm to >1 mm, while simultaneously extending the photoluminescence lifetime and suppressing mid-gap emission. Mechanistic studies using 77Se NMR suggest dual roles for the amine in promoting the formation of a key reactive intermediate and slowing down the final conversion to AgSePh. Finally, we show that amine addition is generalizable to the synthesis of other 2D MOCs, as demonstrated by the growth of single crystals of silver 4-methylphenylselenolate (AgSePhMe), a novel member of the 2D MOC family.

12.
ACS Nano ; 15(12): 20527-20538, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34793677

RESUMEN

Substitutional metal doping is a powerful strategy for manipulating the emission spectra and excited state dynamics of semiconductor nanomaterials. Here, we demonstrate the synthesis of colloidal manganese (Mn2+)-doped organic-inorganic hybrid perovskite nanoplatelets (chemical formula: L2[APb1-xMnxBr3]n-1Pb1-xMnxBr4; L, butylammonium; A, methylammonium or formamidinium; n (= 1 or 2), number of Pb1-xMnxBr64- octahedral layers in thickness) via a ligand-assisted reprecipitation method. Substitutional doping of manganese for lead introduces bright (approaching 100% efficiency) and long-lived (>500 µs) midgap Mn2+ atomic states, and the doped nanoplatelets exhibit dual emission from both the band edge and the dopant state. Photoluminescence quantum yields and band-edge-to-Mn intensity ratios exhibit strong excitation power dependence, even at a very low incident intensity (<100 µW/cm2). Surprisingly, we find that the saturation of long-lived Mn2+ dopant sites cannot explain our observation. Instead, we propose an alternative mechanism involving the cross-relaxation of long-lived Mn-site excitations by freely diffusing band-edge excitons. We formulate a kinetic model based on this cross-relaxation mechanism that quantitatively reproduces all of the experimental observations and validate the model using time-resolved absorption and emission spectroscopy. Finally, we extract a concentration-normalized microscopic rate constant for band edge-to-dopant excitation transfer that is ∼10× faster in methylammonium-containing nanoplatelets than in formamidinium-containing nanoplatelets. This work provides fundamental insight into the interaction of mobile band edge excitons with localized dopant sites in 2D semiconductors and expands the toolbox for manipulating light emission in perovskite nanomaterials.

13.
J Phys Chem Lett ; 12(6): 1638-1643, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33555896

RESUMEN

In atomically thin two-dimensional (2D) crystals, the excitonic properties and band structure scale strongly with the thickness, providing a new playground for the investigation of exciton physics in the ultimate confinement regime. Here, we demonstrate the evolution of the fundamental excitonic properties, such as reduced mass, wave function extension, and exciton binding energy, in the 2D perovskite (PEA)2(MA)n-1PbnI3n+1, for n = 1, 2, 3. These parameters are experimentally determined using optical spectroscopy in a high magnetic field up to 65 T. The observation of the interband Landau level transitions provides direct access to the reduced effective mass µ and band gap Eg. We show that µ increases with the number of inorganic sheets n, reaching the value of three-dimensional (3D) MAPbI3 already for n = 3. Our experimental observations contradict the general expectation that quantum confinement leads to an enhanced carrier mass, showing another aspect of the unprecedented flexibility in the design of the electronic properties of 2D perovskites.

14.
J Phys Chem Lett ; 11(20): 8565-8572, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32975424

RESUMEN

Broadband emission in lead iodide 2D perovskites has been alternately attributed to self-trapped excitons (STEs) or permanent structural defects and/or impurities. Here, we investigate six different multilayered (n > 1) 2D lead iodide perovskites as a function of sample temperature from 5 to 300 K. We distinguish shallow defect-associated emission from a broad near-infrared (NIR) spectral feature, which we assign to an STE through subgap photoexcitation experiments. When we varied the thickness (n = 2, 3, 4), A-site cation (methylammonium vs formamidinium), and organic spacer (butylammonium vs hexylammonium vs phenylethylammonium), we found that the temperature dependence of broad NIR emission was strongly correlated with both the strength of electron-phonon coupling and the extent of structural deformation of the ground-state lattice, strongly supporting the assignment of this spectral feature to an STE. However, the extent to which formation of these STEs is intrinsic versus defect-assisted remains open to debate.

15.
J Chem Phys ; 153(4): 044710, 2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32752687

RESUMEN

We report the low-frequency Raman spectrum (ω = 10 cm-1-150 cm-1) of a wide variety of alkylammonium iodide based 2D lead halide perovskites (2D LHPs) as a function of A-site cation (MA = methylammonium and FA = formamidinium), octahedral layer thickness (n = 2-4), organic spacer chain length (butyl-, pentyl-, hexyl-), and sample temperature (T = 77 K-293 K). Using density functional theory calculations under the harmonic approximation for n = 2 BA:MAPbI, we assign several longitudinal/transverse optical phonon modes between 30 cm-1 and 100 cm-1, the eigendisplacements of which are analogous to that observed previously for octahedral twists/distortions in bulk MAPbI. Additionally, we propose an alternative assignment for low-frequency modes below this band (<30 cm-1) as zone-folded longitudinal acoustic phonons corresponding to the periodicity of the entire layered structure. We compare measured spectra to predictions of the Rytov elastic continuum model for zone-folded dispersion in layered structures. Our results are consistent across the various 2D LHPs studied herein, with energetic shifts of optical phonons corresponding to microscopic structural differences between materials and energetic shifts of acoustic phonons according to changes in the periodicity and elastic properties of the perovskite/organic subphases. This study highlights the importance of both the local atomic order and the superlattice structure on the vibrational properties of layered 2D materials.

16.
J Phys Chem Lett ; 10(11): 2924-2930, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31066277

RESUMEN

We investigate the phase behavior of two-dimensional (C xH2 x+1NH3)2[(MA,FA)PbI3] n-1PbI4 layered perovskites near room temperature (-20 °C to +100 °C) as a function of the octahedral layer thickness ( n = 1, 2, 3, 4), alkylammonium chain length (butyl, pentyl, and hexyl), and identity of the small organic cation (methylammonium and formamidinium). Using differential scanning calorimetry and X-ray diffraction, we observe a reversible first-order phase transition corresponding to a partial melting transition of the alkylammonium chains separating the perovskite layers. The melting temperature, Tm, increases from 10 to 77.9 to 95.9 °C as the carbon chain length increases from C4 to C5 to C6, but it is insensitive to octahedral layer thickness, n. The latent heat of melting, Δ Hm, was in the range of 3-5 kJ/mol-spacer, indicating only partial disordering of the carbon chain. We discuss these findings and their implications in the context of melting in other two-dimensional molecular systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...