Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Biosci ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665093

RESUMEN

Objective: DOT1L is the only known histone H3K79 methyltransferase essential for the development of the embryonic cardiovascular system, including the heart, blood vessels, and lymphatic vessels, through transcriptional regulation. Our previous study demonstrated that Dot1l deletion results in aberrant lymphatic development and function. However, its precise function in the postnatal cardiovascular system remains unknown. Methods: Using conditional and inducible Dot1l knockout (KO) mice, along with a reporter strain carrying the Geo gene at the Dot1l locus, DOT1L expression and its function in the vascular system during postnatal life were investigated. To assess vessel morphology and vascular permeability, we administered Latex or Evans blue dye to KO mice. In addition, in vitro tube formation and cell migration assays were performed using DOT1L-depleted human umbilical vein endothelial cells (HUVECs). Changes in the expression of vascular genes in HUVECs were measured by quantitative polymerase chain reaction. Results: Our findings demonstrate that conditional Dot1l knockout in the Tg (Tie2-cre) strain results in abnormal blood vessel formation and lymphatic anomalies in the intestine. In a mouse model of Rosa26-creER-mediated inducible Dot1l knockout, we observed vascular phenotypes, including increased vascular permeability and brain hemorrhage, when DOT1L was deleted in adulthood. Additionally, DOT1L depletion in cultured HUVECs led to impaired cell migration and tube formation, likely due to altered gene transcription. These findings highlight the essential role of DOT1L in maintaining vascular integrity and function during embryonic development and postnatal life. Conclusion: Our study revealed that DOT1L is required for the maintenance of adult vascular function through the regulation of gene expression.

2.
J Pediatr Surg ; 59(5): 832-838, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418278

RESUMEN

BACKGROUND: Lung hypoplasia contributes to congenital diaphragmatic hernia (CDH) associated morbidity and mortality. Changes in lung wingless-type MMTV integration site family member (Wnt)-signalling and its downstream effector beta-catenin (CTNNB1), which acts as a transcription coactivator, exist in animal CDH models but are not well characterized in humans. We aim to identify changes to Wnt-signalling gene expression in human CDH lungs and hypothesize that pathway expression will be lower than controls. METHODS: We identified 51 CDH cases and 10 non-CDH controls with archival formalin-fixed paraffin-embedded (FFPE) autopsy lung tissue from 2012 to 2022. 11 liveborn CDH cases and an additional two anterior diaphragmatic hernias were excluded from the study, leaving 38 CDH cases. Messenger ribonucleic acid (mRNA) expression of Wnt-signalling effectors WNT2B and CTNNB1 was determined for 19 CDH cases and 9 controls. A subset of CDH cases and controls lung sections were immunostained for ß-catenin. Clinical variables were obtained from autopsy reports. RESULTS: Median gestational age was 21 weeks. 81% (n = 31) of hernias were left-sided. 47% (n = 18) were posterolateral. Liver position was up in 81% (n = 31) of cases. Defect size was Type C or D in 58% (n = 22) of cases based on autopsy photos, and indeterminable in 42% (n = 16) of cases. WNT2B and CTNNB1 mRNA expression did not differ between CDH and non-CDH lungs. CDH lungs had fewer interstitial cells expressing ß-catenin protein than non-CDH lungs (13.2% vs 42.4%; p = 0.006). CONCLUSION: There appear to be differences in the abundance and/or localization of ß-catenin proteins between CDH and non-CDH lungs. LEVEL OF EVIDENCE: Level III. TYPE OF STUDY: Case-Control Study.


Asunto(s)
Hernias Diafragmáticas Congénitas , Animales , Humanos , Lactante , beta Catenina/genética , beta Catenina/metabolismo , Estudios de Casos y Controles , Cateninas/metabolismo , Modelos Animales de Enfermedad , Hernias Diafragmáticas Congénitas/patología , Pulmón/anomalías , Éteres Fenílicos/metabolismo , ARN Mensajero/metabolismo
3.
Cells ; 13(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38334608

RESUMEN

Effectively targeting cancer stemness is essential for successful cancer therapy. Recent studies have revealed that SOX2, a pluripotent stem cell factor, significantly contributes to cancer stem cell (CSC)-like characteristics closely associated with cancer malignancy. However, its contradictory impact on patient survival in specific cancer types, including lung adenocarcinoma (LUAD), underscores the need for more comprehensive research to clarify its functional effect on cancer stemness. In this study, we demonstrate that SOX2 is not universally required for the regulation of CSC-like properties in LUAD. We generated SOX2 knockouts in A549, H358, and HCC827 LUAD cells using the CRISPR/Cas9 system. Our results reveal unchanged CSC characteristics, including sustained proliferation, tumor sphere formation, invasion, migration, and therapy resistance, compared to normal cells. Conversely, SOX2 knockdown using conditional shRNA targeting SOX2, significantly reduced CSC traits. However, these loss-of-function effects were not rescued by SOX2 resistant to shRNA, underscoring the potential for SOX2 protein level-independent results in prior siRNA- or shRNA-based research. Ultimately, our findings demonstrate that SOX2 is not absolutely essential in LUAD cancer cells. This emphasizes the necessity of considering cancer subtype-dependent and context-dependent factors when targeting SOX2 overexpression as a potential therapeutic vulnerability in diverse cancers.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Células Madre Neoplásicas , Factores de Transcripción SOXB1 , Humanos , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Células Madre Neoplásicas/patología , ARN Interferente Pequeño/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
4.
Anim Biosci ; 37(6): 1021-1030, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419548

RESUMEN

OBJECTIVE: R-loops are DNA:RNA triplex hybrids, and their metabolism is tightly regulated by transcriptional regulation, DNA damage response, and chromatin structure dynamics. R-loop homeostasis is dynamically regulated and closely associated with gene transcription in mouse zygotes. However, the factors responsible for regulating these dynamic changes in the R-loops of fertilized mouse eggs have not yet been investigated. This study examined the functions of candidate factors that interact with R-loops during zygotic gene activation. METHODS: In this study, we used publicly available next-generation sequencing datasets, including low-input ribosome profiling analysis and polymerase II chromatin immunoprecipitation-sequencing (ChIP-seq), to identify potential regulators of R-loop dynamics in zygotes. These datasets were downloaded, reanalyzed, and compared with mass spectrometry data to identify candidate factors involved in regulating R-loop dynamics. To validate the functions of these candidate factors, we treated mouse zygotes with chemical inhibitors using in vitro fertilization. Immunofluorescence with an anti-R-loop antibody was then performed to quantify changes in R-loop metabolism. RESULTS: We identified DEAD-box-5 (DDX5) and histone deacetylase-2 (HDAC2) as candidates that potentially regulate R-loop metabolism in oocytes, zygotes and two-cell embryos based on change of their gene translation. Our analysis revealed that the DDX5 inhibition of activity led to decreased R-loop accumulation in pronuclei, indicating its involvement in regulating R-loop dynamics. However, the inhibition of histone deacetylase-2 activity did not significantly affect R-loop levels in pronuclei. CONCLUSION: These findings suggest that dynamic changes in R-loops during mouse zygote development are likely regulated by RNA helicases, particularly DDX5, in conjunction with transcriptional processes. Our study provides compelling evidence for the involvement of these factors in regulating R-loop dynamics during early embryonic development.

5.
Front Cell Dev Biol ; 11: 1253274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020889

RESUMEN

The aberrant function of ATP-dependent chromatin remodeler INO80 has been implicated in multiple types of cancers by altering chromatin architecture and gene expression; however, the underlying mechanism of the functional involvement of INO80 mutation in cancer etiology, especially in breast cancer, remains unclear. In the present study, we have performed a weighted gene co-expression network analysis (WCGNA) to investigate links between INO80 expression and breast cancer sub-classification and progression. Our analysis revealed that INO80 repression is associated with differential responsiveness of estrogen receptors (ERs) depending upon breast cancer subtype, ER networks, and increased risk of breast carcinogenesis. To determine whether INO80 loss induces breast tumors, a conditional INO80-knockout (INO80 cKO) mouse model was generated using the Cre-loxP system. Phenotypic characterization revealed that INO80 cKO led to reduced branching and length of the mammary ducts at all stages. However, the INO80 cKO mouse model had unaltered lumen morphology and failed to spontaneously induce tumorigenesis in mammary gland tissue. Therefore, our study suggests that the aberrant function of INO80 is potentially associated with breast cancer by modulating gene expression. INO80 mutation alone is insufficient for breast tumorigenesis.

6.
Stem Cells Int ; 2023: 3320211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810631

RESUMEN

Brain organoids have been considered as an advanced platform for in vitro disease modeling and drug screening, but numerous roadblocks exist, such as lack of large-scale production technology and lengthy protocols with multiple manipulation steps, impeding the industrial translation of brain organoid technology. Here, we describe the high-speed and large-scale production of midbrain organoids using a high-throughput screening-compatible platform within 30 days. Micro midbrain organoids (µMOs) exhibit a highly uniform morphology and gene expression pattern with minimal variability. Notably, µMOs show dramatically accelerated maturation, resulting in the generation of functional µMOs within only 30 days of differentiation. Furthermore, individual µMOs display highly consistent responsiveness to neurotoxin, suggesting their usefulness as an in vitro high-throughput drug toxicity screening platform. Collectively, our data indicate that µMO technology could represent an advanced and robust platform for in vitro disease modeling and drug screening for human neuronal diseases.

7.
Front Cell Dev Biol ; 11: 1176115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397258

RESUMEN

Epigenetic mechanisms are mandatory for endothelial called lymphangioblasts during cardiovascular development. Dot1l-mediated gene transcription in mice is essential for the development and function of lymphatic ECs (LECs). The role of Dot1l in the development and function of blood ECs blood endothelial cells is unclear. RNA-seq datasets from Dot1l-depleted or -overexpressing BECs and LECs were used to comprehensively analyze regulatory networks of gene transcription and pathways. Dot1l depletion in BECs changed the expression of genes involved in cell-to-cell adhesion and immunity-related biological processes. Dot1l overexpression modified the expression of genes involved in different types of cell-to-cell adhesion and angiogenesis-related biological processes. Genes involved in specific tissue development-related biological pathways were altered in Dot1l-depleted BECs and LECs. Dot1l overexpression altered ion transportation-related genes in BECs and immune response regulation-related genes in LECs. Importantly, Dot1l overexpression in BECs led to the expression of genes related to the angiogenesis and increased expression of MAPK signaling pathways related was found in both Dot1l-overexpressing BECs and LECs. Therefore, our integrated analyses of transcriptomics in Dot1l-depleted and Dot1l-overexpressed ECs demonstrate the unique transcriptomic program of ECs and the differential functions of Dot1l in the regulation of gene transcription in BECs and LECs.

8.
Nat Commun ; 14(1): 3220, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270588

RESUMEN

Progesterone (P4) is required for the preparation of the endometrium for a successful pregnancy. P4 resistance is a leading cause of the pathogenesis of endometrial disorders like endometriosis, often leading to infertility; however, the underlying epigenetic cause remains unclear. Here we demonstrate that CFP1, a regulator of H3K4me3, is required for maintaining epigenetic landscapes of P4-progesterone receptor (PGR) signaling networks in the mouse uterus. Cfp1f/f;Pgr-Cre (Cfp1d/d) mice showed impaired P4 responses, leading to complete failure of embryo implantation. mRNA and chromatin immunoprecipitation sequencing analyses showed that CFP1 regulates uterine mRNA profiles not only in H3K4me3-dependent but also in H3K4me3-independent manners. CFP1 directly regulates important P4 response genes, including Gata2, Sox17, and Ihh, which activate smoothened signaling pathway in the uterus. In a mouse model of endometriosis, Cfp1d/d ectopic lesions showed P4 resistance, which was rescued by a smoothened agonist. In human endometriosis, CFP1 was significantly downregulated, and expression levels between CFP1 and these P4 targets are positively related regardless of PGR levels. In brief, our study provides that CFP1 intervenes in the P4-epigenome-transcriptome networks for uterine receptivity for embryo implantation and the pathogenesis of endometriosis.


Asunto(s)
Endometriosis , Progesterona , Transactivadores , Animales , Femenino , Humanos , Ratones , Embarazo , Implantación del Embrión/genética , Endometriosis/genética , Endometriosis/metabolismo , Endometrio/metabolismo , Epigénesis Genética , Progesterona/farmacología , Progesterona/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , ARN Mensajero/metabolismo , Útero/metabolismo , Transactivadores/genética
9.
Environ Sci Pollut Res Int ; 30(1): 2260-2272, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35930146

RESUMEN

This study analyzed spectral variations of the particulate matter (PM hereafter)-exposed pine trees using a spectrometer and a hyperspectral imager to derive the most effective spectral indices to detect the pine needle exposure to PM emission. We found that the spectral variation in the near-infrared (NIR hereafter) bands systemically coincided with the variations in PM concentration, showing larger variations for the diesel group whereas larger dust particles showed spectral variations in both visible and NIR bands. It is because the PM adsorption on needles is the main source of NIR band variation, and the combination of visible and NIR spectra can detect PM absorption. Fourteen bands were selected to classify PM-exposed pine trees with an accuracy of 82% and a kappa coefficient of 0.61. Given that this index employed both visible and NIR bands, it would be able to detect PM adsorption. The findings can be transferred to real-world applications for monitoring air pollution in an urban area.


Asunto(s)
Contaminantes Atmosféricos , Pinus , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Imágenes Hiperespectrales , Monitoreo del Ambiente/métodos , Emisiones de Vehículos/análisis , Árboles , Hojas de la Planta/química
10.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499727

RESUMEN

Precise regulation of the cell cycle of embryonic stem cells (ESCs) is critical for their self-maintenance and differentiation. The cell cycle of ESCs differs from that of somatic cells and is different depending on the cell culture conditions. However, the cell cycle regulation in ESCs via epigenetic mechanisms remains unclear. Here, we showed that the ATP-dependent chromatin remodeler Ino80 regulates the cell cycle genes in ESCs under primed conditions. Ino80 loss led to a significantly extended length of the G1-phase in ESCs grown under primed culture conditions. Ino80 directly bound to the transcription start site and regulated the expression of cell cycle-related genes. Furthermore, Ino80 loss induced cell apoptosis. However, the regulatory mechanism of Ino80 in differentiating ESC cycle slightly differed; an extended S-phase was detected in differentiating inducible Ino80 knockout ESCs. RNA-seq analysis of differentiating ESCs revealed that the expression of genes associated with organ development cell cycle is persistently altered in Ino80 knockout cells, suggesting that cell cycle regulation by Ino80 is not limited to undifferentiated ESCs. Therefore, our study establishes the function of Ino80 in ESC cycle via transcriptional regulation, at least partly. Moreover, this Ino80 function may be universal to other cell types.


Asunto(s)
Células Madre Embrionarias de Ratones , Animales , Ratones , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Puntos de Control del Ciclo Celular , Diferenciación Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica
11.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36430821

RESUMEN

In mice, zygotic genome activation (ZGA) occurs in two steps: minor ZGA at the one-cell stage and major ZGA at the two-cell stage. Regarding the regulation of gene transcription, minor ZGA is known to have unique features, including a transcriptionally permissive state of chromatin and insufficient splicing processes. The molecular characteristics may originate from extremely open chromatin states in the one-cell stage zygotes, yet the precise underlying mechanism has not been well studied. Recently, the R-loop, a triple-stranded nucleic acid structure of the DNA/RNA hybrid, has been implicated in gene transcription and DNA replication. Therefore, in the present study, we examined the changes in R-loop dynamics during mouse zygotic development, and its roles in zygotic transcription or DNA replication. Our analysis revealed that R-loops persist in the genome of metaphase II oocytes and preimplantation embryos from the zygote to the blastocyst stage. In particular, zygotic R-loop levels dynamically change as development proceeds, showing that R-loop levels decrease as pronucleus maturation occurs. Mechanistically, R-loop dynamics are likely linked to ZGA, as inhibition of either DNA replication or transcription at the time of minor ZGA decreases R-loop levels in the pronuclei of zygotes. However, the induction of DNA damage by treatment with anticancer agents, including cisplatin or doxorubicin, does not elicit genome-wide changes in zygotic R-loop levels. Therefore, our study suggests that R-loop formation is mechanistically associated with the regulation of mouse ZGA, especially minor ZGA, by modulating gene transcription and DNA replication.


Asunto(s)
Estructuras R-Loop , Cigoto , Ratones , Animales , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Cromatina/genética
12.
Exp Mol Med ; 54(8): 1098-1108, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35918532

RESUMEN

Meiosis occurs specifically in germ cells to produce sperm and oocytes that are competent for sexual reproduction. Multiple factors are required for successful meiotic entry, progression, and termination. Among them, trimethylation of histone H3 on lysine 4 (H3K4me3), a mark of active transcription, has been implicated in spermatogenesis by forming double-strand breaks (DSBs). However, the role of H3K4me in transcriptional regulation during meiosis remains poorly understood. Here, we reveal that mouse CXXC finger protein 1 (Cfp1), a component of the H3K4 methyltransferase Setd1a/b, is dynamically expressed in differentiating male germ cells and safeguards meiosis by controlling gene expression. Genetic ablation of mouse CFP1 in male germ cells caused complete infertility with failure in prophase I of the 1st meiosis. Mechanistically, CFP1 binds to genes essential for spermatogenesis, and its loss leads to a reduction in H3K4me3 levels and gene expression. Importantly, CFP1 is highly enriched within the promoter/TSS of target genes to elevate H3K4me3 levels and gene expression at the pachytene stage of meiotic prophase I. The most enriched genes were associated with meiosis and homologous recombination during the differentiation of spermatocytes to round spermatids. Therefore, our study establishes a mechanistic link between CFP1-mediated transcriptional control and meiotic progression and might provide an unprecedented genetic basis for understanding human sterility.


Asunto(s)
Meiosis , Semen , Transactivadores/metabolismo , Animales , Epigénesis Genética , Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Masculino , Meiosis/genética , Metilación , Ratones
13.
Cells ; 11(10)2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35626729

RESUMEN

The lymphatic system is critical for maintaining the homeostasis of lipids and interstitial fluid and regulating the immune cell development and functions. Developmental anomaly-induced lymphatic dysfunction is associated with various pathological conditions, including lymphedema, inflammation, and cancer. Most lymphatic endothelial cells (LECs) are derived from a subset of endothelial cells in the cardinal vein. However, recent studies have reported that the developmental origin of LECs is heterogeneous. Multiple regulatory mechanisms, including those mediated by signaling pathways, transcription factors, and epigenetic pathways, are involved in lymphatic development and functions. Recent studies have demonstrated that the epigenetic regulation of transcription is critical for embryonic LEC development and functions. In addition to the chromatin structures, epigenetic modifications may modulate transcriptional signatures during the development or differentiation of LECs. Therefore, the understanding of the epigenetic mechanisms involved in the development and function of the lymphatic system can aid in the management of various congenital or acquired lymphatic disorders. Future studies must determine the role of other epigenetic factors and changes in mammalian lymphatic development and function. Here, the recent findings on key factors involved in the development of the lymphatic system and their epigenetic regulation, LEC origins from different organs, and lymphatic diseases are reviewed.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Animales , Diferenciación Celular/genética , Células Endoteliales/metabolismo , Epigénesis Genética , Sistema Linfático , Vasos Linfáticos/metabolismo , Mamíferos
14.
Biomedicines ; 10(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35453496

RESUMEN

Luminal breast cancer, an etiologically heterogeneous disease, is characterized by high steroid hormone receptor activity and aberrant gene expression profiles. Endocrine therapy and chemotherapy are promising therapeutic approaches to mitigate breast cancer proliferation and recurrence. However, the treatment of therapy-resistant breast cancer is a major challenge. Recent studies on breast cancer etiology have revealed the critical roles of epigenetic factors in luminal breast cancer tumorigenesis and drug resistance. Tumorigenic epigenetic factor-induced aberrant chromatin dynamics dysregulate the onset of gene expression and consequently promote tumorigenesis and metastasis. Epigenetic dysregulation, a type of somatic mutation, is a high-risk factor for breast cancer progression and therapy resistance. Therefore, epigenetic modulators alone or in combination with other therapies are potential therapeutic agents for breast cancer. Several clinical trials have analyzed the therapeutic efficacy of potential epi-drugs for breast cancer and reported beneficial clinical outcomes, including inhibition of tumor cell adhesion and invasiveness and mitigation of endocrine therapy resistance. This review focuses on recent findings on the mechanisms of epigenetic factors in the progression of luminal breast cancer. Additionally, recent findings on the potential of epigenetic factors as diagnostic biomarkers and therapeutic targets for breast cancer are discussed.

15.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35336322

RESUMEN

Machine learning with static-analysis features extracted from malware files has been adopted to detect malware variants, which is desirable for resource-constrained edge computing and Internet-of-Things devices with sensors; however, this learned model suffers from a misclassification problem because some malicious files have almost the same static-analysis features as benign ones. In this paper, we present a new detection method for edge computing that can utilize existing machine learning models to classify a suspicious file into either benign, malicious, or unpredictable categories while existing models make only a binary decision of either benign or malicious. The new method can utilize any existing deep learning models developed for malware detection after appending a simple sigmoid function to the models. When interpreting the sigmoid value during the testing phase, the new method determines if the model is confident about its prediction; therefore, the new method can take only the prediction of high accuracy, which reduces incorrect predictions on ambiguous static-analysis features. Through experiments on real malware datasets, we confirm that the new scheme significantly enhances the accuracy, precision, and recall of existing deep learning models. For example, the accuracy is enhanced from 0.96 to 0.99, while some files are classified as unpredictable that can be entrusted to the cloud for further dynamic or human analysis.


Asunto(s)
Aprendizaje Automático , Humanos
18.
Antioxidants (Basel) ; 10(2)2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33546471

RESUMEN

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5'-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.

19.
Sci Rep ; 11(1): 1727, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462291

RESUMEN

Characterizing the microbial communities inhabiting specimens is one of the primary objectives of microbiome studies. A short-read sequencing platform for reading partial regions of the 16S rRNA gene is most commonly used by reducing the cost burden of next-generation sequencing (NGS), but misclassification at the species level due to its length being too short to consider sequence similarity remains a challenge. Loop Genomics recently proposed a new 16S full-length-based synthetic long-read sequencing technology (sFL16S). We compared a 16S full-length-based synthetic long-read (sFL16S) and V3-V4 short-read (V3V4) methods using 24 human GUT microbiota samples. Our comparison analyses of sFL16S and V3V4 sequencing data showed that they were highly similar at all classification resolutions except the species level. At the species level, we confirmed that sFL16S showed better resolutions than V3V4 in analyses of alpha-diversity, relative abundance frequency and identification accuracy. Furthermore, we demonstrated that sFL16S could overcome the microbial misidentification caused by different sequence similarity in each 16S variable region through comparison the identification accuracy of Bifidobacterium, Bacteroides, and Alistipes strains classified from both methods. Therefore, this study suggests that the new sFL16S method is a suitable tool to overcome the weakness of the V3V4 method.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Heces/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metagenoma , Microbiota/genética , Filogenia , Análisis de Secuencia de ADN/métodos
20.
J Microbiol ; 58(8): 703-710, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32583287

RESUMEN

The gut microbiome, which is symbiotic within the human body, assists in human digestion. It plays significant roles in identifying intestinal disease as well as in maintaining a healthy body with functional immune and metabolic activities. To confirm the consistency of fecal intestinal microbial research, it is necessary to study the changes in intestinal microbial flora according to the fecal collection solution and storage period. We collected fecal samples from three healthy Korean adults. To examine the efficacy of fecal collection solution, we used NBgene-Gut, OMNIgene-Gut, 70% ethanol (Ethanol-70%), and RNAlater. The samples were stored for up to two months at room temperature using three different methods, and we observed changes in microbial communities over time. We analyzed clusters of changes in the microbial flora by observing fecal stock solutions and metagenome sequencing performed over time. In particular, we confirmed the profiling of alpha and beta diversity and microbial classification according to the differences in intestinal environment among individuals. We also confirmed that the microbial profile remained stable for two months and that the microbial profile did not change significantly over time. In addition, our results suggest the possibility of verifying microbial profiling even for long-term storage of a single sample. In conclusion, collecting fecal samples using a stock solution rather than freezing feces seems to be relatively reproducible and stable for GUT metagenome analysis. Therefore, stock solution tubes in intestinal microbial research can be used without problems.


Asunto(s)
Bacterias/clasificación , Bacterias/efectos de los fármacos , Etanol/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Manejo de Especímenes/métodos , Adulto , Bacterias/genética , Bacteroidetes/efectos de los fármacos , Heces/microbiología , Femenino , Firmicutes/efectos de los fármacos , Humanos , Masculino , Proteobacteria/efectos de los fármacos , ARN Ribosómico 16S/genética , República de Corea , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...