Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38470797

RESUMEN

To improve the electrical conductivity of polypyrrole (PPy) nanostructure film through in situ iodine (I2) doping, this study proposes an atmospheric pressure plasma reactor (APPR) where heated I2 dopant vapor is fed through capillary electrodes that serve as electrodes for discharge ignition. A large amount of the heated I2 vapor introduced into the reactor separately from a monomer gas can be effectively activated by an intense plasma via capillary electrodes. In particular, intensive plasma is obtained by properly adjusting the bluff body position in the APPR. Based on the ICCD and OES results, the I2 vapor injected through the capillary nozzle electrode is observed to form I2 charge species. The formed I2 species could directly participate in growing in situ I2-doped PPy films. Thus, in situ I2-doped PPy nanostructure films grown using the proposed APPR exhibit higher thicknesses of 15.3 µm and good electrical conductivities, compared to the corresponding non-doped films.

2.
Nanomaterials (Basel) ; 13(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242113

RESUMEN

This study investigates the structural phase and dielectric properties of poly(vinylidenefluoride-co-trifluoroethylene) (P[VDF-TrFE]) thin films grown via atmospheric pressure (AP) plasma deposition using a mixed polymer solution comprising P[VDF-TrFE] polymer nano powder and dimethylformamide (DMF) liquid solvent. The length of the glass guide tube of the AP plasma deposition system is an important parameter in producing intense cloud-like plasma from the vaporization of DMF liquid solvent containing polymer nano powder. This intense cloud-like plasma for polymer deposition is observed in a glass guide tube of length 80 mm greater than the conventional case, thus uniformly depositing the P[VDF-TrFE] thin film with a thickness of 3 µm. The P[VDF-TrFE] thin films with excellent ß-phase structural properties were coated under the optimum conditions at room temperature for 1 h. However, the P[VDF-TrFE] thin film had a very high DMF solvent component. The post-heating treatment was then performed on a hotplate in air for 3 h at post-heating temperatures of 140 °C, 160 °C, and 180 °C to remove DMF solvent and obtain pure piezoelectric P[VDF-TrFE] thin films. The optimal conditions for removing the DMF solvent while maintaining the ß phases were also examined. The post-heated P[VDF-TrFE] thin films at 160 °C had a smooth surface with nanoparticles and crystalline peaks of ß phases, as confirmed by the Fourier transform infrared spectroscopy and XRD analysis. The dielectric constant of the post-heated P[VDF-TrFE] thin film was measured to be 30 using an impedance analyzer at 10 kHz and is expected to be applied to electronic devices such as low-frequency piezoelectric nanogenerators.

3.
Polymers (Basel) ; 15(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37050242

RESUMEN

Polyaniline (PANI) was synthesized from liquid aniline, a nitrogen-containing aromatic compound, through the atmospheric pressure (AP) plasma process using a newly designed plasma jet array with wide spacing between plasma jets. To expand the area of the polymerized film, the newly proposed plasma jet array comprises three AP plasma jet devices spaced 7 mm apart in a triangular configuration and an electrodeless quartz tube capable of applying auxiliary gas in the center of the triangular plasma jets. The vaporized aniline monomer was synthesized into a PANI film using the proposed plasma array device. The effects of nitrogen gas addition on the morphological, chemical, and electrical properties of PANI films in AP argon plasma polymerization were examined. The iodine-doped PANI film was isolated from the atmosphere through encapsulation. The constant electrical resistance of the PANI film indicates that the conductive PANI film can achieve the desired resistance by controlling the atmospheric exposure time through encapsulation.

4.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202495

RESUMEN

To generate a stable and effective air-liquid discharge in an open atmosphere, we investigated the effect of the dielectric barrier on the discharge between the pin electrode and liquid surface in an atmospheric-pressure plasma reactor. The atmospheric-pressure plasma reactor used in this study was based on a pin-plate discharge structure, and a metal wire was used as a pin-type power electrode. A plate-type ground electrode was placed above and below the vessel to compare the pin-liquid discharge and pin-liquid barrier discharge (PLBD). The results indicated that the PLBD configuration utilizing the bottom of the vessel as a dielectric barrier outperformed the pin-liquid setup in terms of the discharge stability and that the concentration of reactive species was different in the two plasma modes. PLBD can be used as a digestion technique for determining the phosphorus concentration in natural water sources. The method for decomposing phosphorus compounds by employing PLBD exhibited excellent decomposition performance, similar to the performance of thermochemical digestion-an established conventional method for phosphorus detection in water. The PLBD structure can replace the conventional chemical-agent-based digestion method for determining the total dissolved phosphorus concentration using the ascorbic acid reduction method.

5.
Polymers (Basel) ; 14(22)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36433044

RESUMEN

In this study, we describe an atmospheric pressure plasma jet (APPJ) device made of four-bore tubing operable in inhospitable humid environments and introduce two potential applications of liquid material processing: decomposition of aqueous phosphorus compounds and solution-plasma polymerization. A four-bore tube was used as the plasma transfer conduit and two diagonal bores contained metal wires. In the proposed APPJ device, the metal wires serving as electrodes are completely enclosed inside the holes of the multi-bore glass tube. This feature allows the APPJ device to operate both safely and reliably in humid environments or even underwater. Thus, we demonstrate that the proposed electrode-embedded APPJ device can effectively decompose aqueous phosphorus compounds into their phosphate form by directly processing the solution sample. As another application of the proposed APPJ device, we also present the successful synthesis of polypyrrole nanoparticles by solution plasma polymerization in liquid pyrrole.

6.
Polymers (Basel) ; 14(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35458285

RESUMEN

This study systematically investigated an atmospheric pressure plasma reactor with a centered single pin electrode inside a dielectric tube for depositing the polyaniline (PANI) thin film based on the experimental case studies relative to variations in pin electrode configurations (cases I, II, and III), bluff-body heights, and argon (Ar) gas flow rates. In these cases, the intensified charge-coupled device and optical emission spectroscopy were analyzed to investigate the factors affecting intensive glow-like plasma generation for deposition with a large area. Compared to case I, the intense glow-like plasma of the cases II and III generated abundant reactive nitrogen species (RNSs) and excited argon radical species for fragmentation and recombination of PANI. In case III, the film thickness and deposition rate of the PANI thin film were about 450 nm and 7.5 nm/min, respectively. This increase may imply that the increase in the excited radical species contributes to the fragmentation and recombination due to the increase in RNSs and excited argon radicals during the atmospheric pressure (AP) plasma polymerization to obtain the PANI thin film. This intense glow-like plasma generated broadly by the AP plasma reactor can uniformly deposit the PANI thin film, which is confirmed by field emission-scanning electron microscopy and Fourier transform infrared spectroscopy.

7.
Materials (Basel) ; 14(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34947158

RESUMEN

Here, we proposed a pin-to-liquid dielectric barrier discharge (DBD) structure that used a water-containing vessel body as a dielectric barrier for the stable and effective treatment of aqueous solutions in an open atmosphere. To obtain an intense pin-to-liquid alternating current discharge using a dielectric barrier, discharge characteristics, including the area and shape of a ground-plate-type electrode, were investigated after filling the vessel with equivalent amounts of water. Consequently, as the area of the ground electrode increased, the discharge current became stronger, and its timing became faster. Moreover, we proposed that the pin-to-liquid DBD reactor could be used to decompose phosphorus compounds in water in the form of phosphate as a promising pretreatment method for monitoring total phosphorus in water. The decomposition of phosphorus compounds using the pin-to-liquid DBD reactor demonstrated excellent performance-comparable to the thermochemical pretreatment method-which could be a standard pretreatment method for decomposing phosphorus compounds in water.

8.
Nanomaterials (Basel) ; 11(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34578629

RESUMEN

The morphological and chemical properties of polyaniline (PANI) nanocomposite films after adding small amounts of auxiliary gases such as argon, nitrogen, and oxygen during atmospheric pressure (AP) plasma polymerization are investigated in detail. A separate gas-supply line for applying an auxiliary gas is added to the AP plasma polymerization system to avoid plasma instability due to the addition of auxiliary gas during polymerization. A small amount of neutral gas species in the plasma medium can reduce the reactivity of monomers hyperactivated by high plasma energy and prevent excessive crosslinking, thereby obtaining a uniform and regular PANI nanocomposite film. The addition of small amounts of argon or nitrogen during polymerization significantly improves the uniformity and regularity of PANI nanocomposite films, whereas the addition of oxygen weakens them. In particular, the PANI film synthesized by adding a small amount of nitrogen has the best initial electrical resistance and resistance changing behavior with time after the ex situ iodine (I2)-doping process compared with other auxiliary gases. In addition, it is experimentally demonstrated that the electrical conductivity of the ex situ I2-doped PANI film can be preserved for a long time by isolating it from the atmosphere.

9.
Polymers (Basel) ; 13(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34301024

RESUMEN

In this paper, we present an overview of recent approaches in the gas/aerosol-through-plasma (GATP) and liquid plasma methods for synthesizing polymer films and nanoparticles (NPs) using an atmospheric-pressure plasma (APP) technique. We hope to aid students and researchers starting out in the polymerization field by compiling the most commonly utilized simple plasma synthesis methods, so that they can readily select a method that best suits their needs. Although APP methods are widely employed for polymer synthesis, and there are many related papers for specific applications, reviews that provide comprehensive coverage of the variations of APP methods for polymer synthesis are rarely reported. We introduce and compile over 50 recent papers on various APP polymerization methods that allow us to discuss the existing challenges and future direction of GATP and solution plasma methods under ambient air conditions for large-area and mass nanoparticle production.

10.
Polymers (Basel) ; 13(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071654

RESUMEN

New nanostructured conducting porous polythiophene (PTh) films are directly deposited on substrates at room temperature (RT) by novel atmospheric pressure plasma jets (APPJs) polymerization technique. The proposed plasma polymerization synthesis technique can grow the PTh films with a very fast deposition rate of about 7.0 µm·min-1 by improving the sufficient nucleation and fragment of the thiophene monomer. This study also compares pure and iodine (I2)-doped PTh films to demonstrate the effects of I2 doping. To check the feasibility as a sensing material, NO2-sensing properties of the I2-doped PTh films-based gas sensors are also investigated. As a result, the proposed APPJs device can produce the high density, porous and ultra-fast polymer films, and polymers-based gas sensors have high sensitivity to NO2 at RT. Our approach enabled a series of processes from synthesis of sensing materials to fabrication of gas sensors to be carried out simultaneously.

11.
Materials (Basel) ; 14(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800238

RESUMEN

The use of low-voltage-driven plasma in atmospheric pressure (AP) plasma polymerization is considered as a simple approach to reducing the reactivity of the monomer fragments in order to prevent excessive cross-linking, which would have a negative effect on the structural properties of the polymerized thin films. In this study, AP-plasma polymerization can be processed at low voltage by an AP-plasma reactor with a wire electrode configuration. A bare tungsten wire is used as a powered electrode to initiate discharge in the plasma area (defined as the area between the wide glass tube and the substrate stand), thus allowing plasma polymerization to proceed at a lower voltage compared to other AP-plasma reactors with dielectric barriers. Thus, transparent polyaniline (PANI) films are successfully synthesized. The surface morphology, roughness, and film thickness of the PANI films are characterized by field emission scanning electron microscopy and atomic force microscopy. Thus, the surface of the polymerized film is shown to be homogenous, smooth, and flat, with a low surface roughness of 1 nm. In addition, the structure and chemical properties of the PANI films are investigated by Fourier transform infrared spectroscopy, thus revealing an improvement in the degree of polymerization, even though the process was performed at low voltage.

12.
Polymers (Basel) ; 13(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525506

RESUMEN

In-situ iodine (I2)-doped atmospheric pressure (AP) plasma polymerization is proposed, based on a newly designed AP plasma reactor with a single wire electrode that enables low-voltage-driven plasma polymerization. The proposed AP plasma reactor can proceed plasma polymerization at low voltage levels, thereby enabling an effective in-situ I2 doping process by maintaining a stable glow discharge state even if the applied voltage increases due to the use of a discharge gas containing a large amount of monomer vapors and doping materials. The results of field-emission scanning electron microscopy (FE-SEM) and Fourier transformation infrared spectroscopy (FT-IR) show that the polyaniline (PANI) films are successfully deposited on the silicon (Si) substrates, and that the crosslinking pattern of the synthesized nanoparticles is predominantly vertically aligned. In addition, the in-situ I2-doped PANI film fabricated by the proposed AP plasma reactor exhibits excellent electrical resistance without electrical aging behavior. The developed AP plasma reactor proposed in this study is more advantageous for the polymerization and in-situ I2 doping of conductive polymer films than the existing AP plasma reactor with a dielectric barrier.

13.
Nanomaterials (Basel) ; 12(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35009982

RESUMEN

In atmospheric pressure (AP) plasma polymerization, increasing the effective volume of the plasma medium by expanding the plasma-generating region within the plasma reactor is considered a simple method to create regular and uniform polymer films. Here, we propose a newly designed AP plasma reactor with a cruciform wire electrode that can expand the discharge volume. Based on the plasma vessel configuration, which consists of a wide tube and a substrate stand, two tungsten wires crossed at 90 degrees are used as a common powered electrode in consideration of two-dimensional spatial expansion. In the wire electrode, which is partially covered by a glass capillary, discharge occurs at the boundary where the capillary terminates, so that the discharge region is divided into fourths along the cruciform electrode and the discharge volume can successfully expand. It is confirmed that although a discharge imbalance in the four regions of the AP plasma reactor can adversely affect the uniformity of the polymerized, nanostructured polymer film, rotating the substrate using a turntable can significantly improve the film uniformity. With this AP plasma reactor, nanostructured polythiophene (PTh) films are synthesized and the morphology and chemical properties of the PTh nanostructure, as well as the PTh-film uniformity and electrical properties, are investigated in detail.

14.
Polymers (Basel) ; 12(10)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998239

RESUMEN

This paper investigates the properties of thiophene and aniline copolymer (TAC) films deposited by using atmospheric pressure plasma jets copolymerization technique relative to various blending ratios of aniline and thiophene monomer for synthesizing the donor-acceptor conjugated copolymers. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy are utilized to measure the surface morphology, roughness and film thickness of TAC films. Structural and chemical properties of TAC films are investigated by Fourier transforms-infrared spectroscopy (FT-IR), time of flight secondary ion mass spectrometry, and X-ray photoelectron spectroscopy. FE-SEM images show that the film thickness and nanoparticles size of the TAC films increase with an addition thiophene monomer in the aniline monomer. FE-SEM, FT-IR results show that TAC films are successfully synthesized on glass substrates in all cases. The iodine doped TAC film on the Si substrate with interdigitated electrodes shows the lowest electrical resistance at blending condition of thiophene of 25%.

15.
Polymers (Basel) ; 12(9)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867312

RESUMEN

The quality of polyaniline nanoparticles (PANI NPs) synthesized in plasma polymerization depends on the discharge characteristics of a solution plasma process (SPP). In this paper, the low temperature dielectric barrier discharge (DBD) is introduced to minimize the destruction of aniline molecules induced by the direct current (DC) spark discharge. By adopting the new electrode structure coupled with a gas channel, a low temperature DBD is successfully implemented in a SPP, for the first time, thus inducing an effective interaction between the Ar plasma and aniline monomer. We examine the effects of a low temperature DBD on characteristics of polyaniline nanoparticles synthesized by a SPP with an Ar gas bubble channel. As a result, both carbonization of aniline monomer and erosion of the electrode are significantly reduced, which is confirmed by analyses of the synthesized PANI NPs.

16.
Polymers (Basel) ; 11(1)2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30960089

RESUMEN

This work researched polymerization of liquid aniline monomer by solution plasma with a gas bubble channel and investigated characteristics of solution plasma and polyaniline (PANI). The injected gas bubble channel in the proposed solution plasma process (SPP) played a significant role in producing a stable discharge in liquid aniline monomer at a low voltage and furthermore enhancing the contact surface area between liquid aniline monomer and plasma, thereby achieving polymerization on the boundary of the liquid aniline monomer and plasma. Solution plasma properties were analyzed with voltage⁻current, optical emission spectroscopy, and high-speed camera. Conductivity, percentage yield, and firing voltage of PANI nanoparticle dispersed solution were measured. To investigate the characteristics of synthesized PANI nanoparticles, field emission scanning electron microscopy, dynamic light scattering, transmission electron microscopy, selective area electron diffraction (SAED) pattern, Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography, ¹H-nuclear magnetic resonance (¹H-NMR), and X-ray photo spectroscopy (XPS) were examined. The FTIR, ¹H-NMR, and XPS analysis showed the PANI characteristic peaks with evidence that some quinoid and benzene rings were broken by the solution plasma process with a gas bubble channel. The results indicate that PANI nanoparticles have a spherical shape with a size between 25 and 35 nm. The SAED pattern shows the amorphous pattern.

17.
Polymers (Basel) ; 11(3)2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30960380

RESUMEN

Pinhole free layers are needed in order to prevent oxygen and water from damaging flexible electrical and bio-devices. Although polymerized methyl methacrylate (polymethyl methacrylate, PMMA) for the pinhole free layer has been studied extensively in the past, little work has been done on synthesizing films of this material using atmospheric pressure plasma-assisted electro-polymerization. Herein, we report the synthesis and properties of plasma-PMMA (pPMMA) synthesized using the atmospheric pressure plasma-assisted electro-polymerization technique at room temperature. According to the Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time of flight-secondary ion mass spectrometry (ToF-SIMS) results, the characteristic peaks from the pPMMA polymer chain were shown to have been detected. The results indicate that the percentage of hydrophobic groups (C⁻C and C⁻H) is greater than that of hydrophilic groups (C⁻O and O⁻C=O). The field emission-scanning electron microscope (FE-SEM) and thickness measurement results show that the surface morphology is quite homogenous and amorphous in nature, and the newly proposed pPMMA film at a thickness of 1.5 µm has high transmittance (about 93%) characteristics. In addition, the results of water contact angle tests show that pPMMA thin films can improve the hydrophobicity.

18.
Materials (Basel) ; 11(6)2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29799512

RESUMEN

Most methods controlling size and shape of metal nanoparticles are chemical methods, and little work has been done using only plasma methods. Size- and shape-controlled synthesis of silver nanoparticles (Ag NPs) is proposed based on adjusting the gas bubble formation produced between two silver electrodes. The application of a voltage waveform with three different pulse widths during a plasma process in water can generate different gas bubble formations. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of Ag NPs synthesized using three different bubble formations reveal that spherical Ag NPs are synthesized when very tiny bubbles are generated between two electrodes or when only the grounded electrode is enveloped with large gas bubbles, but Ag nanoplates are synthesized when both electrodes are completely enveloped with large gas bubbles.

19.
Materials (Basel) ; 10(11)2017 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-29113129

RESUMEN

Although polymerized aniline (polyaniline, PANI) with and without iodine (I2) doping has already been extensively studied, little work has been done on the synthesis of PANI films using atmospheric pressure plasma (APP) deposition. Therefore, this study characterized pure and I2-doped PANI films synthesized using an advanced APP polymerization system. The I2 doping was conducted ex-situ and using an I2 chamber method following the APP deposition. The pure and I2-doped PANI films were structurally analyzed using field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and time of flight secondary ion mass spectrometry (ToF-SIMS) studies. When increasing the I2 doping time, the plane and cross-sectional SEM images showed a decrease in the width and thickness of the PANI nanofibers, while the AFM results showed an increase in the roughness and grain size of the PANI films. Moreover, the FT-IR, XPS, and ToF-SIMS results showed an increase in the content of oxygen-containing functional groups and C=C double bonds, yet decrease in the C-N and C-H bonds when increasing the I2 doping time due to the reduction of hydrogen in the PANI films via the I2. To check the suitability of the conductive layer for polymer display applications, the resistance variations of the PANI films grown on the interdigitated electrode substrates were also examined according to the I2 doping time.

20.
J Nanosci Nanotechnol ; 17(1): 335-40, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-29620832

RESUMEN

We investigated the characteristics of MgO surface with MgO nanocrystal powders due to the longterm (500 hours) ion bombardment comparing with the conventional MgO surface in this study. When the MgO nanocrystal powders were coated on the conventional MgO surface, it was observed that the sputtered Mg particles from MgO surface were re-deposited on the MgO nanocrystal powders, which was able to significantly suppress the re-crystallization on the phosphor layers. We confirm that the MgO nanocrystal powders play a significant role in suppressing the degradation of the MgO surface and phosphor layer after long-term severe ion bombardments. Accordingly, when the MgO nanocrystal powers were applied to the conventional MgO surface, the variations of discharge characteristics, such as address discharge delay time, firing voltage of sustain and address discharge, and luminance, were significantly reduced comparing with the conventional MgO surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...