Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Xenotransplantation ; 31(2): e12850, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38501729

RESUMEN

Porcine islet xenotransplantation has been highlighted as an alternative to allo islet transplantation. Despite the remarkable progress that has been made in porcine-islet pre-clinical studies in nonhuman primates, immunological tolerance to porcine islets has not been achieved to date. Therefore, allo islet transplantation could be required after the failure of porcine islet xenotransplantation. Here, we report the long-term control of diabetes by allogeneic pancreatic islet transplantation in diabetic rhesus monkeys that rejected previously transplanted porcine islets. Four diabetic male rhesus monkeys received the porcine islets and then allo islets (5700-19 000 IEQ/kg) were re-transplanted for a short or long period after the first xeno islet rejection. The recipient monkeys were treated with an immunosuppressive regimen consisting of ATG, humira, and anakinra for induction, and sirolimus and tofacitinib for maintenance therapy. The graft survival days of allo islets in these monkeys were >440, 395, >273, and 127, respectively, similar to that in allo islet transplanted cynomolgus monkeys that received the same immunosuppressive regimen without xeno sensitization. Taken together, it is likely that prior islet xenotransplantation does not affect the survival of subsequent allo islets under clinically applicable immunosuppressants.


Asunto(s)
Diabetes Mellitus , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Piperidinas , Pirimidinas , Masculino , Porcinos , Animales , Macaca mulatta , Trasplante Heterólogo , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Supervivencia de Injerto
3.
Am J Transplant ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38514013

RESUMEN

Xenotransplantation offers the potential to meet the critical need for heart and lung transplantation presently constrained by the current human donor organ supply. Much was learned over the past decades regarding gene editing to prevent the immune activation and inflammation that cause early organ injury, and strategies for maintenance of immunosuppression to promote longer-term xenograft survival. However, many scientific questions remain regarding further requirements for genetic modification of donor organs, appropriate contexts for xenotransplantation research (including nonhuman primates, recently deceased humans, and living human recipients), and risk of xenozoonotic disease transmission. Related ethical questions include the appropriate selection of clinical trial participants, challenges with obtaining informed consent, animal rights and welfare considerations, and cost. Research involving recently deceased humans has also emerged as a potentially novel way to understand how xeno-organs will impact the human body. Clinical xenotransplantation and research involving decedents also raise ethical questions and will require consensus regarding regulatory oversight and protocol review. These considerations and the related opportunities for xenotransplantation research were discussed in a workshop sponsored by the National Heart, Lung, and Blood Institute, and are summarized in this meeting report.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38420727

RESUMEN

BACKGROUND: Studies on the interaction between tumour-infiltrating immune cells (TIICs) and tumour cells in melanoma arising from congenital melanocytic nevus (CMN) are lacking. OBJECTIVE: The aim of this study was to determine the intratumoral immune landscape of TIICs and tumour cells during invasion and metastasis. METHODS: Tissue specimens were obtained from patients with melanoma originating from CMN. Differential gene expression in melanoma cells and TIICs during invasion and metastasis was determined using spatial transcriptomics. RESULTS: As invasion depth increased, the expression of LGALS3, known to induce tumour-driven immunosuppression, increased in melanoma cells. In T cells, the expression of genes that inhibit T-cell activation increased with increasing invasion depth. In macrophages, the expression of genes related to the anti-inflammatory M2 phenotype was upregulated with increasing invasion depth. Compared to primary tumour cells, melanoma cells in metastatic lesions showed upregulated expression of genes associated with cancer immune evasion, including AXL and EPHA2, which impede T-cell recruitment, and BST2, associated with M2 polarization. Furthermore, T cells showed increased expression of genes related to immunosuppression, and macrophages exhibited increased expression of genes associated with the M2 phenotype. CONCLUSIONS: The interaction between melanomas arising from CMN and TIICs may be important for tumour progression and metastasis.

5.
EBioMedicine ; 100: 104985, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38306895

RESUMEN

BACKGROUND: Psoriasis is a chronic inflammatory skin disease with a Th17-skewed immune phenotype. Although it has been generally accepted that regulatory T cells (Tregs) in lesional psoriatic skin have functional impairment due to the local inflammatory microenvironment, the molecular properties of skin-homing psoriatic Tregs have not been well explored. METHODS: We designed an extensive 39 marker mass cytometry (CyTOF) panel to deeply profile the immune landscape of skin-homing Tregs from 31 people with psoriasis stratified by psoriasis area severity index score as mild (n = 15) to moderate-severe (n = 16) and 32 healthy controls. We further validated the findings with an in-vitro chemokine-mediated Treg migration assay, immunofluorescent imaging of normal and psoriatic lesional skin and analysed public single-cell RNA-sequencing datasets to expand upon our findings into the local tissue microenvironments. FINDINGS: We discovered an overall decrease in CLAhi Tregs and specifically, CLAhiCCR5+ Tregs in psoriasis. Functional markers CD39 and FoxP3 were elevated in psoriatic Tregs. However, CCR7 expression was significantly increased while CCR4 and CLA expression was reduced in psoriatic Tregs and CLAhi Tregs, which was associated with disease severity. Moreover, psoriatic Tregs revealed increased migratory capacity towards CCR7's ligands, CCL19/CCL21. Interrogation of public single-cell RNA sequencing data confirmed reduced expression of skin-trafficking markers in lesional-skin Tregs compared to non-lesioned skin, further substantiated by immunofluorescent staining. INTERPRETATION: Psoriatic circulating Tregs showed an impaired skin-trafficking phenotype thus leading to insufficient suppression of ongoing inflammation in the lesional skin, expanding upon our current understanding of the impairment of Treg-mediated immunosuppression in psoriasis. FUNDING: This research was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Science and Information and Communications Technology (2020R1C1C1014513, 2021R1A4A5032185, 2020R1F1A1073692); and the new faculty research seed money grant of Yonsei University College of Medicine for 2021 (2021-32-0033).


Asunto(s)
Psoriasis , Linfocitos T Reguladores , Humanos , Receptores CCR7/metabolismo , Psoriasis/metabolismo , Piel/metabolismo , Células Th17
6.
PLoS One ; 18(11): e0293888, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37963172

RESUMEN

Type 2 diabetes is considered one of the top ten life-threatening diseases worldwide. Following economic growth, obesity and metabolic syndrome became the most common risk factor for type 2 diabetes. In this regard, high-fat diet-fed C57BL/6J mouse model is widely used for type 2 diabetes pathogenesis and novel therapeutics development. However, criteria for classifying type 2 diabetes progressive stages in this mouse model are yet to be determined, led to the difficulty in experimental end-point decision. In this study, we fed C57BL/6J male mice with 45% high-fat diet, which is physiologically close to human high-fat consumption, and evaluated the progression of type 2 diabetes. After consuming high-fat diet for 4 weeks, mice developed metabolic syndrome, including obesity, significant increase of fasting plasma cholesterol level, elevation of both C-peptide and fasting blood glucose levels. By combining both fasting blood glucose test and 2-hour-oral glucose tolerance test, our results illustrated clear progressive stages from metabolic syndrome into pre-diabetes before onset of type 2 diabetes in C57BL/6J mice given a 45% high-fat diet. Besides, among metabolic measurements, accumulating body weight gain > 16.23 g for 12 weeks could be utilized as a potential parameter to predict type 2 diabetes development in C57BL/6J mice. Thus, these results might support future investigations in term of selecting appropriate disease stage in high-fat diet-fed C57BL/6J mouse model for studying early prevention and treatment of type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Humanos , Masculino , Ratones , Animales , Prueba de Tolerancia a la Glucosa , Dieta Alta en Grasa/efectos adversos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Síndrome Metabólico/complicaciones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Modelos Animales de Enfermedad , Ayuno
7.
Genomics Inform ; 21(2): e18, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37704208

RESUMEN

Immunologists have activated T cells in vitro using various stimulation methods, including phorbol myristate acetate (PMA)/ionomycin and αCD3/αCD28 agonistic antibodies. PMA stimulates protein kinase C, activating nuclear factor-κB, and ionomycin increases intracellular calcium levels, resulting in activation of nuclear factor of activated T cell. In contrast, αCD3/αCD28 agonistic antibodies activate T cells through ZAP-70, which phosphorylates linker for activation of T cell and SH2-domain-containing leukocyte protein of 76 kD. However, despite the use of these two different in vitro T cell activation methods for decades, the differential effects of chemical-based and antibody-based activation of primary human T cells have not yet been comprehensively described. Using single-cell RNA sequencing (scRNA-seq) technologies to analyze gene expression unbiasedly at the single-cell level, we compared the transcriptomic profiles of the non-physiological and physiological activation methods on human peripheral blood mononuclear cell-derived T cells from four independent donors. Remarkable transcriptomic differences in the expression of cytokines and their respective receptors were identified. We also identified activated CD4 T cell subsets (CD55+) enriched specifically by PMA/ionomycin activation. We believe this activated human T cell transcriptome atlas derived from two different activation methods will enhance our understanding, highlight the optimal use of these two in vitro T cell activation assays, and be applied as a reference standard when analyzing activated specific disease-originated T cells through scRNA-seq.

10.
Exp Mol Med ; 55(3): 665-679, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36964252

RESUMEN

Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) are known to exert immunosuppressive functions. This study showed that MSC-sEVs specifically convert T helper 17 (Th17) cells into IL-17 low-producer (ex-Th17) cells by degrading RAR-related orphan receptor γt (RORγt) at the protein level. In experimental autoimmune encephalomyelitis (EAE)-induced mice, treatment with MSC-sEVs was found to not only ameliorate clinical symptoms but also to reduce the number of Th17 cells in draining lymph nodes and the central nervous system. MSC-sEVs were found to destabilize RORγt by K63 deubiquitination and deacetylation, which was attributed to the EP300-interacting inhibitor of differentiation 3 (Eid3) contained in the MSC-sEVs. Small extracellular vesicles isolated from the Eid3 knockdown MSCs by Eid3-shRNA failed to downregulate RORγt. Moreover, forced expression of Eid3 by gene transfection was found to significantly decrease the protein level of RORγt in Th17 cells. Altogether, this study reveals the novel immunosuppressive mechanisms of MSC-sEVs, which suggests the feasibility of MSC-sEVs as an attractive therapeutic tool for curing Th17-mediated inflammatory diseases.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Vesículas Extracelulares , Células Madre Mesenquimatosas , Animales , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células Th17 , Diferenciación Celular/genética , Procesamiento Proteico-Postraduccional , Células Madre Mesenquimatosas/metabolismo , Vesículas Extracelulares/metabolismo
11.
Immune Netw ; 23(6): e44, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38188600

RESUMEN

Mesenchymal stem cells (MSCs) are effective in treating autoimmune diseases and managing various conditions, such as engraftment of allogeneic islets. Additionally, autologous and HLA-matched allogeneic MSCs can aid in the engraftment of human allogeneic kidneys with or without low doses of tacrolimus, respectively. However, HLA alloantigens are problematic because cell therapy uses more HLA-mismatched allogeneic cells than autologous for convenience and standardization. In particular, HLA-mismatched MSCs showed increased Ag-specific T/B cells and reduced viability faster than HLA-matched MSCs. In CRISPR/Cas9-based cell therapy, Cas9 induce T cell activation in the recipient's immune system. Interestingly, despite their immunogenicity being limited to the cells with foreign Ags, the accumulation of HLA alloantigen-sensitized T/B cells may lead to allograft rejection, suggesting that alloantigens may have a greater scope of adverse effects than foreign Ags. To avoid alloantigen recognition, the ß2-microglobulin knockout (B2MKO) system, eliminating class-I MHC, was able to avoid rejection by alloreactive CD8 T cells compared to controls. Moreover, universal donor cells in which both B2M and Class II MHC transactivator (CIITA) were knocked out was more effective in avoiding immune rejection than single KO. However, B2MKO and CIITA KO system remain to be controlled and validated for adverse effects such as the development of tumorigenicity due to deficient Ag recognition by CD8 T and CD4 T cells, respectively. Overall, better HLA-matching or depletion of HLA alloantigens prior to cell therapy can reduce repetitive transplantation through the long-term survival of allogeneic cell therapy, which may be especially important for patients seeking allogeneic transplantation.

12.
Exp Mol Med ; 54(5): 613-625, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35550603

RESUMEN

The C-terminal fragment of CABIN1 interacts with calcineurin and represses the transcriptional activity of the nuclear factor of activated T cells (NFAT). However, the specific sequences and mechanisms through which it binds to calcineurin are unclear. This study determined that decameric peptide (CABIN1 residues 2146-2155) is minimally required for binding to calcineurin. This peptide contains a unique "PPTP" C-terminal sequence and a "PxIxIT" N-terminal motif. Furthermore, p38MAPK phosphorylated the threonine residue of the "PPTP" sequence under physiological conditions, dramatically enhancing the peptide's binding affinity to calcineurin. Therefore, the CABIN1 peptide inhibited the calcineurin-NFAT pathway and the activation of T cells more efficiently than the VIVIT peptide without affecting calcineurin's phosphatase activity. The CABIN1 peptide could thus be a more potent calcineurin inhibitor and provide therapeutic opportunities for various diseases caused by the calcineurin-NFAT pathway.


Asunto(s)
Calcineurina , Factores de Transcripción NFATC , Calcineurina/metabolismo , Activación de Linfocitos , Factores de Transcripción NFATC/metabolismo , Péptidos/farmacología , Linfocitos T/metabolismo
13.
Front Immunol ; 13: 856363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464471

RESUMEN

Adult T-cell Leukemia/Lymphoma (ATLL) is a rare aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) infection. However, little is known about the underlying activated molecular pathways at the single cell level. Moreover, the intercellular communications between the tumor microenvironment (TME) and tumor cells in this malignancy are currently unknown. Difficulties in harvesting fresh tissue in a clinical setting have hampered our deeper understanding of this malignancy. Herein, we examined ATLL using archived fresh frozen tissue after biopsy using single-cell RNA sequencing (scRNA-seq) with T-cell receptor (TCR) clonal analysis. Highly clonal tumor cells showed multiple activating pathways, suggesting dynamic evolution of the malignancy. By dissecting diverse cell types comprising the TME, we identified a novel subset of cancer-associated fibroblast, which showed enriched epidermal growth factor receptor (EGFR)-related transcripts including early growth response 1 and 2 (EGR1 and EGR2). Cancer associated fibroblasts (CAFs) of ATLL play an important role for CD4 T-cell proliferation via FGF7-FGF1 and PDGFA-PDGFRA/B signaling, and CAFs, particularly EGR-enriched, are also associated with CD8 and NKT expansion by EGFR. These findings suggest a potential targeted therapeutic pathway to better treat this neoplasm.


Asunto(s)
Fibroblastos Asociados al Cáncer , Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Linfoma , Adulto , Fibroblastos Asociados al Cáncer/metabolismo , Receptores ErbB/genética , Virus Linfotrópico T Tipo 1 Humano/genética , Humanos , Leucemia-Linfoma de Células T del Adulto/genética , RNA-Seq , Receptores de Antígenos de Linfocitos T/genética , Microambiente Tumoral/genética
14.
Zygote ; 30(1): 103-110, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34176529

RESUMEN

This study was performed to improve production efficiency at the level of recipient pig and donor nuclei of transgenic cloned pigs used for xenotransplantation. To generate transgenic pigs, human endothelial protein C receptor (hEPCR) and human thrombomodulin (hTM) genes were introduced using the F2A expression vector into GalT-/-/hCD55+ porcine neonatal ear fibroblasts used as donor cells and cloned embryos were transferred to the sows and gilts. Cloned fetal kidney cells were also used as donor cells for recloning to increase production efficiency. Pregnancy and parturition rates after embryo transfer and preimplantation developmental competence were compared between cloned embryos derived from adult and fetal cells. Significantly higher parturition rates were shown in the group of sows (50.0 vs. 4.1%), natural oestrus (20.8 vs. 0%), and ovulated ovary (16.7 vs. 5.6%) compared with gilt, induced and non-ovulated, respectively (P < 0.05). When using gilts as recipients, final parturitions occurred in only the fetal cell groups and significantly higher blastocyst rates (15.1% vs. 21.3%) were seen (P < 0.05). Additionally, gene expression levels related to pluripotency were significantly higher in the fetal cell group (P < 0.05). In conclusion, sows can be recommended as recipients due to their higher efficiency in the generation of transgenic cloned pigs and cloned fetal cells also can be recommended as donor cells through correct nuclear reprogramming.


Asunto(s)
Clonación de Organismos , Técnicas de Transferencia Nuclear , Animales , Animales Modificados Genéticamente , Blastocisto , Femenino , Fibroblastos , Embarazo , Sus scrofa , Porcinos
15.
J Leukoc Biol ; 111(3): 539-551, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34028877

RESUMEN

Immunometabolism is rising as an intriguing topic that reveals the connection between immune cell function and metabolic processes. Especially, fatty acid metabolism plays an essential role in the dendritic cells (DCs) during the differentiation and maturation period. We questioned whether regulation of acetyl-CoA carboxylases 1 and 2-(ACC1/2), the core enzymes of fatty acid synthesis (FAS), would control DC function. Here, we report that blocking ACC1/2 to prevent FAS during DC maturation switched their cellular metabolism into fatty acid oxidation to fuel oxidative phosphorylation. This action turned DCs to utilize exogenous fatty acids to sustain their basal energy demand and maintain a stable cellular respiration rate. Coincidentally, under the ACC1/2 inhibitor treatment, LPS-treated DCs exhibited a semimaturation phenotype with a maturation-resistance feature, with decreased expression of costimulatory molecules including CD86 and CD40, along with the reduction of IL-12 and IL-6. The migratory capability of DCs has been known to relate to the glycolysis pathway, and here we showed that the ACC1/2 blockade did not affect the expression of CCR7 and DC migration. Furthermore, we found that under the ACC1/2 blocking condition, DCs pulsed with OVA failed to activate OVA-specific CD4+ T cell proliferation even though their antigen uptake capacity was intact. Together, our data suggest ACC1/2 as a promising target to control DC fate.


Asunto(s)
Acetil-CoA Carboxilasa , Ácidos Grasos , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Células Dendríticas , Ácidos Grasos/metabolismo , Activación de Linfocitos , Fosforilación Oxidativa
16.
Sci Adv ; 7(26)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34162541

RESUMEN

Pancreatic ß cell therapy for type 1 diabetes is limited by low cell survival rate owing to physical stress and aggressive host immune response. In this study, we demonstrate a multilayer hydrogel nanofilm caging strategy capable of protecting cells from high shear stress and reducing immune response by interfering cell-cell interaction. Hydrogel nanofilm is fabricated by monophenol-modified glycol chitosan and hyaluronic acid that cross-link each other to form a nanothin hydrogel film on the cell surface via tyrosinase-mediated reactions. Furthermore, hydrogel nanofilm formation was conducted on mouse ß cell spheroids for the islet transplantation application. The cytoprotective effect against physical stress and the immune protective effect were evaluated. Last, caged mouse ß cell spheroids were transplanted into the type 1 diabetes mouse model and successfully regulated its blood glucose level. Overall, our enzymatic cross-linking-based hydrogel nanofilm caging method will provide a new platform for clinical applications of cell-based therapies.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Animales , Glucemia , Hidrogeles/farmacología , Ratones , Esferoides Celulares
17.
Am J Transplant ; 21(11): 3561-3572, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34058060

RESUMEN

Porcine islet transplantation is an alternative to allo-islet transplantation. Retransplantation of islets is a routine clinical practice in islet allotransplantation in immunosuppressed recipients and will most likely be required in islet xenotransplantation in immunosuppressed recipients. We examined whether a second infusion of porcine islets could restore normoglycemia and further evaluated the efficacy of a clinically available immunosuppression regimen including anti-thymocyte globulin for induction; belimumab, sirolimus, and tofacitinib for maintenance and adalimumab, anakinra, IVIg, and tocilizumab for inflammation control in a pig to nonhuman primate transplantation setting. Of note, all nonhuman primates were normoglycemic after the retransplantation of porcine islets without induction therapy. Graft survival was >100 days for all 3 recipients, and 1 of the 3 monkeys showed insulin independence for >237 days. Serious lymphodepletion was not observed, and rhesus cytomegalovirus reactivation was controlled without any serious adverse effects throughout the observation period in all recipients. These results support the clinical applicability of additional infusions of porcine islets. The maintenance immunosuppression regimen we used could protect the reinfused islets from acute rejection.


Asunto(s)
Diabetes Mellitus , Trasplante de Islotes Pancreáticos , Animales , Terapia de Inmunosupresión , Macaca mulatta , Porcinos , Trasplante Heterólogo
18.
Lab Anim Res ; 37(1): 14, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022964

RESUMEN

BACKGROUND: The objective of this study was to investigate whether the use of live attenuated varicella zoster virus (VZV) MAV vaccination can efficiently induce VZV antibody production in naive rhesus monkeys as an approach to prevent simian varicella virus (SVV) reactivation in animals immunosuppressed for transplantation studies. RESULTS: Clinically available human VZV vaccine was used to induce the production of anti-VZV antibodies in rhesus monkeys. A vial of the vaccine was subcutaneously injected at 0 week, and the second and third vaccination was performed at 5 and 6 weeks by intratracheal inoculation. The titer of anti-VZV IgG was assessed at 0, 2, 4, 6, and 7 weeks. At 2 weeks, 3/16 were seropositive for VZV IgG. At 6 weeks, 9/16 were shown to be seropositive. At 7 weeks, 16/16 were found to be seropositive. CONCLUSIONS: The VZV vaccine via intratrachael inoculation was shown to induce VZV IgG humoral immunity in rhesus monkeys and may be important immunosuppressed macaques for transplantation studies. Although the humoral immunity produced is an important finding, further studies will be necessary to confirm possible protection and it could protect probably against SVV infection in rhesus monkey.

19.
Endocrinol Metab (Seoul) ; 36(1): 146-156, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33677936

RESUMEN

BACKGROUND: The microencapsulation is an ideal solution to overcome immune rejection without immunosuppressive treatment. Poor biocompatibility and small molecular antigens secreted from encapsulated islets induce fibrosis infiltration. Therefore, the aims of this study were to improve the biocompatibility of microcapsules by dexamethasone coating and to verify its effect after xenogeneic transplantation in a streptozotocin-induced diabetes mice. METHODS: Dexamethasone 21-phosphate (Dexa) was dissolved in 1% chitosan and was cross-linked with the alginate microcapsule surface. Insulin secretion and viability assays were performed 14 days after microencapsulation. Dexa-containing chitosan-coated alginate (Dexa-chitosan) or alginate microencapsulated porcine islets were transplanted into diabetic mice. The fibrosis infiltration score was calculated from the harvested microcapsules. The harvested microcapsules were stained with trichrome and for insulin and macrophages. RESULTS: No significant differences in glucose-stimulated insulin secretion and islet viability were noted among naked, alginate, and Dexa-chitosan microencapsulated islets. After transplantation of microencapsulated porcine islets, nonfasting blood glucose were normalized in both the Dexa-chitosan and alginate groups until 231 days. The average glucose after transplantation were lower in the Dexa-chitosan group than the alginate group. Pericapsular fibrosis and inflammatory cell infiltration of microcapsules were significantly reduced in Dexa-chitosan compared with alginate microcapsules. Dithizone and insulin were positive in Dexa-chitosan capsules. Although fibrosis and macrophage infiltration was noted on the surface, some alginate microcapsules were stained with insulin. CONCLUSION: Dexa coating on microcapsules significantly suppressed the fibrotic reaction on the capsule surface after transplantation of xenogenic islets containing microcapsules without any harmful effects on the function and survival of the islets.


Asunto(s)
Quitosano , Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Alginatos/metabolismo , Alginatos/farmacología , Animales , Cápsulas/metabolismo , Cápsulas/farmacología , Quitosano/metabolismo , Quitosano/farmacología , Dexametasona/metabolismo , Dexametasona/farmacología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/cirugía , Fibrosis , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Ratones , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...