Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(6): e0305230, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38913648

RESUMEN

Obstructive sleep apnea (OSA) is characterized by cyclic normoxic and hypoxic conditions (intermittent hypoxia, IH) induced by the repeated closure of the upper-airway respiratory tract. As a pathomechanism of OSA, IH results in various comorbidities via chronic inflammation and related pathways. However, the role of other inflammatory cells, such as lymphocytes, has not been well-explored. This study aimed to examine the effects of IH on the distribution and balance of T cell subsets and other related cytokines, and mechanisms in the immune system. We modified OSA mouse model (male C57BL/6N male) using our customized chamber that controls specific sleep and oxygenic cycles. To induce hypoxia, the IH group was repeatedly exposed to 5% O2 and 21% O2 lasting for 120 s each for 7 h daily for 4 weeks. Mice were then subjected to a recovery period of 4 weeks, in which IH stimulation was ceased. T cells and related cytokines were analyzed using flow cytometry and immunohistochemistry. Compared with the control group, the IH group had significantly lower levels of CD4+CD25+Foxp3+ regulatory T cells but higher levels of Th 17, IL-4, HIF-1, and inflammatory cytokines. After the recovery period, these altered changes in the immune cells were recovered, and we found no significant difference in their levels between the control and recovery groups. This study revealed that the Th17/Treg ratio is increased by intermittent hypoxia, and this imbalance can explain immune-related diseases, including recently reported allergies, autoimmune, and even cancer diseases, arising from OSA.


Asunto(s)
Modelos Animales de Enfermedad , Hipoxia , Ratones Endogámicos C57BL , Apnea Obstructiva del Sueño , Linfocitos T Reguladores , Células Th17 , Animales , Apnea Obstructiva del Sueño/inmunología , Linfocitos T Reguladores/inmunología , Masculino , Hipoxia/inmunología , Hipoxia/complicaciones , Células Th17/inmunología , Ratones , Citocinas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Interleucina-4/metabolismo
2.
Environ Sci Pollut Res Int ; 30(32): 78004-78016, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37303013

RESUMEN

Globally, the number of heavy metal (HM)-polluted sites has increased rapidly in recent years, posing a serious threat to agricultural productivity, human health, and environmental safety. Hence, it is necessary to remediate HM-polluted sites to increase cultivatable lands for agricultural productivity, prevent hazardous effects to human health, and promote environmental safety. Removal of HMs using plants (phytoremediation) is a promising method as it is eco-friendly. Recently, ornamental plants have been widely used in phytoremediation programs as they can simultaneously eliminate HMs and are aesthetically pleasing. Among the ornamental plants, Iris species are frequently used; however, their role in HM remediation has not been reviewed yet. Here, the importance of Iris species in the ornamental industry and their different commercial aspects are briefly described. Additionally, the mechanisms of how the plant species absorb and transport the HMs to the above-ground tissues and tolerate HM stress are highlighted. The variation in HM remediation efficiency depending on the plant species, HM type and concentration, use of certain supplements, and experimental conditions are also discussed. Iris species are able to remove other hazards as well, such as pesticides, pharmaceutical compounds, and industrial wastes, from polluted soils or waste-water. Owing to the valuable information presented in this review, we expect more applications of the species in reclaiming polluted sites and beautifying the environment.


Asunto(s)
Género Iris , Metales Pesados , Contaminantes del Suelo , Humanos , Contaminantes del Suelo/análisis , Plantas , Residuos Industriales , Metales Pesados/análisis , Biodegradación Ambiental , Suelo
3.
J Nanosci Nanotechnol ; 20(7): 4364-4367, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31968475

RESUMEN

Zinc oxide (ZnO) nanoparticles layers are used as a substitute for organic electron transport layer due to high electron mobility, higher thermal stability and less sensitivity to the oxygen/moisture. In this study, we investigated the electron injection properties of ZnO nanoparticles in QLED compared with TPBi commonly used as injection layer in OLEDs. The expected electron injection barrier from energy diagram is similar in both devices, but the current density of the ZnO injection layer was slightly high compared with the TPBi injection layer. The current efficiency of ZnO and TPBi devices were 5.21 cd/A and 2.24 cd/A, respectively. The current efficiency of TPBi device is below half of ZnO device. We found that the electron-hole recombination occurs not only in the QD but also in the poly-TPD for TPBi device.

4.
J Nanosci Nanotechnol ; 20(7): 4454-4457, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31968495

RESUMEN

Quantum dot light-emitting diodes (QLEDs) have attracted considerable attention owing to the narrow emission spectra, wide color gamut, high quantum yield and size-controlled emission wavelength. Zinc oxide nanoparticles have been widely used as an electron transport layer (ETL) in QLEDs due to their excellent electrical properties. In this study, we compared the efficiency of QLEDs with organic and zinc oxide ETLs in viewpoint of the charge balance. The QLEDs were constructed using ZnO nanoparticles with an average particle size of 3 nm or 3TPYMB as the ETL materials. CdSe/ZnS quantum dots and poly-TPD were used as a light-emitting elements and hole transporting material, respectively. The QLED with 3TPYMB ETL exhibited current efficiency of 7.71 cd/A, while the efficiency of the QLED using ZnO nanoparticles was significantly improved to 38.76 cd/A. Such a substantial improvement of emission efficiency in the QLEDs with ZnO ETL was attributed to the much better charge balance by the ZnO.

5.
3 Biotech ; 8(9): 393, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30175030

RESUMEN

We investigated the expression of anthocyanin structural genes and transcription factors (TFs) associated with varying anthocyanin content during different developmental stages (S1-S4) of the gerbera cultivars 'Nathasha' and 'Rosalin'. Accumulation of anthocyanin started at S1 and reached a maximum at S3 in both cultivars. Enhancement of anthocyanin content in 'Nathasha' was associated with upregulation of ANS and MYB10, whereas in 'Rosalin', upregulation was associated with CHS1, MYB10, and MYC1. Low-temperature exposure (6 °C) enhanced anthocyanin content to a greater extent than that at 22 °C via stronger upregulation of CHS1 and MYB10 in 'Nathasha' and CHS1 in 'Rosalin', irrespective of flower developmental stage. However, differences in anthocyanin content between the two cultivars were found to be influenced by the expression levels of all structural genes and TFs, irrespective of flower developmental stage and temperature conditions. We suggest that differences in the regulation mechanisms of anthocyanin biosynthesis and coloration pattern between 'Nathasha' and 'Rosalin' are related to differences in the expression patterns of structural genes and TFs; however, further functional studies of the key genes in anthocyanin biosynthesis are needed.

6.
PLoS One ; 8(8): e68772, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23967055

RESUMEN

Plant genetic engineering, which has led to the production of plant-derived monoclonal antibodies (mAb(P)s), provides a safe and economically effective alternative to conventional antibody expression methods. In this study, the expression levels and biological properties of the anti-rabies virus mAb(P) SO57 with or without an endoplasmic reticulum (ER)-retention peptide signal (Lys-Asp-Glu-Leu; KDEL) in transgenic tobacco plants (Nicotiana tabacum) were analyzed. The expression levels of mAb(P) SO57 with KDEL (mAb(P)K) were significantly higher than those of mAb(P) SO57 without KDEL (mAb(P)) regardless of the transcription level. The Fc domains of both purified mAb(P) and mAb(P)K and hybridoma-derived mAb (mAb(H)) had similar levels of binding activity to the FcγRI receptor (CD64). The mAb(P)K had glycan profiles of both oligomannose (OM) type (91.7%) and Golgi type (8.3%), whereas the mAb(P) had mainly Golgi type glycans (96.8%) similar to those seen with mAb(H). Confocal analysis showed that the mAb(P)K was co-localized to ER-tracker signal and cellular areas surrounding the nucleus indicating accumulation of the mAb(P) with KDEL in the ER. Both mAb(P) and mAb(P)K disappeared with similar trends to mAb(H) in BALB/c mice. In addition, mAb(P)K was as effective as mAb(H) at neutralizing the activity of the rabies virus CVS-11. These results suggest that the ER localization of the recombinant mAb(P) by KDEL reprograms OM glycosylation and enhances the production of the functional antivirus therapeutic antibody in the plant.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Expresión Génica , Planticuerpos/genética , Planticuerpos/metabolismo , Animales , Glicosilación , Espacio Intracelular , Ratones , Células Vegetales/metabolismo , Planticuerpos/química , Planticuerpos/inmunología , Planticuerpos/aislamiento & purificación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Transporte de Proteínas , Nicotiana/genética , Nicotiana/metabolismo
7.
Hybridoma (Larchmt) ; 30(5): 419-26, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22008068

RESUMEN

The baculovirus-insect cell system is considered a feasible expression system for recombinant glycoprotein production due to its several advantages, including high capacity, flexibility, and glycosylation capability. However, accurate titering of the recombinant baculovirus is required to ensure high expression in insect cells using a commercial and expensive immunoassay titer kit in which the envelope glycoprotein of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-type baculovirus is detected by anti-envelope glycoprotein antibody and a secondary antibody conjugated to horseradish peroxidase (HRP). In this study, conditions for the expression of the CO17-1A immunotherapeutic monoclonal antibody (MAb) against colorectal cancer cells in a baculovirus system were optimized without using a commercial titering kit. Several variables were investigated to optimize antibody expression in a baculovirus-insect cell system, including baculovirus passage, volume of the infecting baculovirus inoculum (100, 200, 400, and 800 µL), and the harvest time of insect cells or cell supernatants after virus infection (24, 48, and 72 h). Two different pFastBac vectors carrying the CO17-1A MAb genes with or without the KDEL endoplasmic reticulum (ER) retention motif (Lys-Asp-Glu-Leu) fused to the HC (MAb CO17-1A K and MAb CO17-1A, respectively) were constructed and used to generate baculoviruses. Immunoblot analysis was conducted to confirm expression of MAb CO17-1A K and MAb CO17-1A in baculovirus-infected insect cells. Densitometry analysis of the protein bands was used to quantify the relative expression under different conditions. The highest expression was observed in lysed cells infected with 400 µL of passage 3 baculovirus (P(3) BV) carrying the gene encoding the CO17-1A MAb without KDEL at 72 h after virus infection. These results suggest that the infection conditions, the number of virus passages, baculovirus inoculum volume, and the harvest time can be modified to optimize MAb expression without using a BaculoELISA titer kit in a baculovirus-insect cell system.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antineoplásicos/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Antígenos de Neoplasias/inmunología , Baculoviridae/genética , Células Cultivadas , Clonación Molecular , Neoplasias Colorrectales , Retículo Endoplásmico , Vectores Genéticos , Señales de Clasificación de Proteína , Transporte de Proteínas , Spodoptera/citología , Transfección
8.
J Biosci Bioeng ; 110(2): 135-40, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20547339

RESUMEN

Advantages of the baculovirus insect cell expression system for production of recombinant proteins include high capacity, flexibility, and glycosylation capability. In this study, this expression system was exploited to produce anti-cancer monoclonal antibody (mAb) CO17-1A, which recognizes the antigen GA733. The heavy chain (HC) and light chain (LC) genes of mAb CO17-1A were cloned under the control of P(10) and Polyhedrin promoters in the pFastBac dual vector, respectively. Gene expression cassettes carrying the HC and LC genes were transposed into a bacmid in Escherichia coli (DH10Bac). The transposed bacmid was transfected to Sf9 insect cells to generate baculovirus expressing mAb CO17-1A. Confocal immunofluorescence and Western blot analyses confirmed expression of mAb CO17-1A in baculovirus-infected insect cells. The optimum conditions for mAb expression were evaluated at 24, 48, and 72 h after the virus infection at an optimum virus multiplicity of infection of 1. Expression of mAb CO17-1A in insect cells significantly increased at 72 h after infection. HPLC analysis of glycosylation status revealed that the insect-derived mAb (mAb(I)) CO17-1A had insect specific glycan structures. ELISA showed that the purified mAb(I) from cell culture supernatant specifically bound to SW948 human colorectal cancer cells. Fluorescence-activated cell sorting analysis showed that, although mAb(I) had insect specific glycan structures that differed from their mammalian counterparts, mAb(I) similarly interacted with CD64 (FcgammaRI) and Fc of IgG, compared to the interactions of mammalian-derived mAb. These results suggest that the baculovirus insect cell expression system is able to express, assemble, and secrete biofunctional full size mAb.


Asunto(s)
Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Baculoviridae/fisiología , Neoplasias Colorrectales/tratamiento farmacológico , Polisacáridos/química , Ingeniería de Proteínas/métodos , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Vectores Genéticos/genética , Humanos , Receptores de IgG , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...