Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Leukemia ; 37(8): 1638-1648, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37393342

RESUMEN

Vitamin C has been demonstrated to regulate hematopoietic stem cell frequencies and leukemogenesis by augmenting and restoring Ten-Eleven Translocation-2 (TET2) function, potentially acting as a promising adjunctive therapeutic agent for leukemia. However, glucose transporter 3 (GLUT3) deficiency in acute myeloid leukemia (AML) impedes vitamin C uptake and abolishes the clinical benefit of vitamin C. In this study, we aimed to investigate the therapeutic value of GLUT3 restoration in AML. In vitro GLUT3 restoration was conducted with the transduction of GLUT3-overexpressing lentivirus or the pharmacological salvage with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) treatment to OCI-AML3, a naturally GLUT3-deficient AML cell line. The effects of GLUT3 salvage were further confirmed in patient-derived primary AML cells. Upregulation of GLUT3 expression made AML cells successfully augment TET2 activity and enhanced the vitamin C-induced anti-leukemic effect. Pharmacological GLUT3 salvage has the potential to overcome GLUT3 deficiency in AML and improves the antileukemic effect of vitamin C treatments.


Asunto(s)
Dioxigenasas , Leucemia Mieloide Aguda , Humanos , Ácido Ascórbico/farmacología , Transportador de Glucosa de Tipo 3 , Leucemia Mieloide Aguda/genética , Vitamina A/metabolismo , Vitamina A/uso terapéutico , Translocación Genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/metabolismo
2.
Clin Epigenetics ; 15(1): 75, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37138342

RESUMEN

BACKGROUND: Although most patients with diffuse large B-cell lymphoma (DLBCL) achieve complete remission after first-line rituximab-containing immunochemotherapy, up to 40% of patients relapse and require salvage therapy. Among those patients, a substantial proportion remain refractory to salvage therapy due to insufficient efficacy or intolerance of toxicities. A hypomethylating agent, 5-azacytidine, showed a chemosensitizing effect when primed before chemotherapy in lymphoma cell lines and newly diagnosed DLBCL patients. However, its potential to improve outcomes of salvage chemotherapy in DLBCL has not been investigated. RESULTS: In this study, we demonstrated the mechanism of 5-azacytidine priming as a chemosensitizer in a platinum-based salvage regimen. This chemosensitizing effect was associated with endogenous retrovirus (ERV)-induced viral mimicry responses via the cGAS-STING axis. We found deficiency of cGAS impaired the chemosensitizing effect of 5-azacytidine. Furthermore, combining vitamin C and 5-azacytidine to synergistically activate STING could be a potential remedy for insufficient priming induced by 5-azacytidine alone. CONCLUSIONS: Taken together, the chemosensitizing effect of 5-azacytidine could be exploited to overcome the limitations of the current platinum-containing salvage chemotherapy in DLBCL and the status of cGAS-STING has the potential to predict the efficacy of 5-azacytidine priming.


Asunto(s)
Retrovirus Endógenos , Linfoma de Células B Grandes Difuso , Humanos , Retrovirus Endógenos/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Recurrencia Local de Neoplasia/diagnóstico , Metilación de ADN , Rituximab/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Azacitidina/farmacología , Azacitidina/uso terapéutico , Epigénesis Genética
3.
Bioorg Med Chem Lett ; 87: 129259, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36990246

RESUMEN

High temperature requirement A serine proteases (HTRA) are ubiquitously expressed and participate in protein quality control and cellular stress responses. They are linked to several clinical illnesses, including bacterial infection, cancer, age-related macular degeneration, and neurodegenerative diseases. In addition, several recent studies have revealed HTRAs as important biomarkers and potential therapeutic targets, necessitating the development of an effective detection method to evaluate their functional states in various disease models. We developed a new series of HTRA-targeting activity-based probes with enhanced subtype selectivity and reactivity. In conjunction with our previously developed tetrapeptide probes, we established the structure-activity relationship of the new probes for different HTRA subtypes. Our probes are cell-permeable and have potent inhibitory effects against HTRA1 and HTRA2, making them valuable for identifying and validating HTRAs as an important biomarker.


Asunto(s)
Serina Endopeptidasas , Serina Proteasas , Serina Proteasas/metabolismo , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad
4.
Leuk Lymphoma ; 64(1): 205-216, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36331521

RESUMEN

Endogenous BFL1 expression renders diffuse large B-cell lymphoma (DLBCL) cells insensitive to B-cell lymphoma 2 (BCL2) and/or MCL1 inhibitors. Considering the difficulties in developing a direct BFL1 inhibitor, we intended to inhibit histone deacetylase (HDAC) to mitigate the biological role of BFL1 by modulating WT1 and NOXA. Cells expressing high BFL1 exhibited enhanced sensitivity to pan-HDAC inhibitor compared to low BFL1 expressing cells, mainly attributable to the difference in the amount of apoptosis. HDAC inhibitors decreased BFL1 and WT1 expressions while increasing NOXA levels. The BFL1 knockdown experiment demonstrated that HDAC inhibitor's sensitivity depends on the BFL1 expression in DLBCL cells. Furthermore, we found that the specific HDAC class was expected to play a critical role in BFL1 inhibition by comparing the effects of several HDAC inhibitors. Thus, our study provides a rationale for using HDAC inhibitors to induce apoptosis in DLBCL patients using BFL1 as a predictive biomarker.


Asunto(s)
Antineoplásicos , Linfoma de Células B Grandes Difuso , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Apoptosis , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo
5.
Genome Med ; 14(1): 111, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171613

RESUMEN

BACKGROUND: Although anti-apoptotic proteins of the B-cell lymphoma-2 (BCL2) family have been utilized as therapeutic targets in acute myeloid leukaemia (AML), their complicated regulatory networks make individualized therapy difficult. This study aimed to discover the transcriptional signatures of BCL2 family genes that reflect regulatory dynamics, which can guide individualized therapeutic strategies. METHODS: From three AML RNA-seq cohorts (BeatAML, LeuceGene, and TCGA; n = 451, 437, and 179, respectively), we constructed the BCL2 family signatures (BFSigs) by applying an innovative gene-set selection method reflecting biological knowledge followed by non-negative matrix factorization (NMF). To demonstrate the significance of the BFSigs, we conducted modelling to predict response to BCL2 family inhibitors, clustering, and functional enrichment analysis. Cross-platform validity of BFSigs was also confirmed using NanoString technology in a separate cohort of 47 patients. RESULTS: We established BFSigs labeled as the BCL2, MCL1/BCL2, and BFL1/MCL1 signatures that identify key anti-apoptotic proteins. Unsupervised clustering based on BFSig information consistently classified AML patients into three robust subtypes across different AML cohorts, implying the existence of biological entities revealed by the BFSig approach. Interestingly, each subtype has distinct enrichment patterns of major cancer pathways, including MAPK and mTORC1, which propose subtype-specific combination treatment with apoptosis modulating drugs. The BFSig-based classifier also predicted response to venetoclax with remarkable performance (area under the ROC curve, AUROC = 0.874), which was well-validated in an independent cohort (AUROC = 0.950). Lastly, we successfully confirmed the validity of BFSigs using NanoString technology. CONCLUSIONS: This study proposes BFSigs as a biomarker for the effective selection of apoptosis targeting treatments and cancer pathways to co-target in AML.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico
6.
Nanomedicine ; 45: 102586, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868519

RESUMEN

No medication has been approved for secondary injuries after traumatic brain injury (TBI). While free radicals are considered a major mediator of secondary injury, conventional antioxidants only have modest clinical efficacy. Here, we synthesized CX201 consisting of core cerium oxide nanoparticles coated with 6-aminocaproic acid and polyvinylpyrrolidone in aqueous phase. CX201 with 3.49 ± 1.11 nm of core and 6.49 ± 0.56 nm of hydrodynamic diameter showed multi-enzymatic antioxidant function. Owing to its excellent physiological stability and cell viability, CX201 had a neuroprotective effect in vitro. In a TBI animal model, an investigator-blinded randomized experiment showed a single intravenously injected CX201 significantly improved functional recovery compared to the control. CX201 reduced lipid peroxidation and inflammatory cell recruitment at the damaged brain. These suggest ultrasmall CX201 can efficiently reduce secondary brain injuries after TBI. Given the absence of current therapies, CX201 may be proposed as a novel therapeutic strategy for TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Cerio , Nanopartículas , Fármacos Neuroprotectores , Ácido Aminocaproico/uso terapéutico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Cerio/uso terapéutico , Radicales Libres/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Polímeros/uso terapéutico , Povidona
7.
Molecules ; 26(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406634

RESUMEN

Recent advances in fluorescence imaging techniques and super-resolution microscopy have extended the applications of fluorescent probes in studying various cellular processes at the molecular level. Specifically, organelle-targeted probes have been commonly used to detect cellular metabolites and transient chemical messengers with high precision and have become invaluable tools to study biochemical pathways. Moreover, several recent studies reported various labeling strategies and novel chemical scaffolds to enhance target specificity and responsiveness. In this review, we will survey the most recent reports of organelle-targeted fluorescent probes and assess their general strategies and structural features on the basis of their target organelles. We will discuss the advantages of the currently used probes and the potential challenges in their application as well as future directions.


Asunto(s)
Colorantes Fluorescentes/análisis , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Orgánulos/metabolismo , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA