Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Immunol ; 8(88): eadg7597, 2023 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-37831759

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) caused by CNS-infiltrating leukocytes, including TH17 cells that are critical mediators of disease pathogenesis. Although targeting leukocyte trafficking is effective in treating autoimmunity, there are currently no therapeutic interventions that specifically block encephalitogenic TH17 cell migration. Here, we report integrin α3 as a TH17 cell-selective determinant of pathogenicity in experimental autoimmune encephalomyelitis. CNS-infiltrating TH17 cells express high integrin α3, and its deletion in CD4+ T cells or Il17a fate-mapped cells attenuated disease severity. Mechanistically, integrin α3 enhanced the immunological synapse formation to promote the polarization and proliferation of TH17 cells. Moreover, the transmigration of TH17 cells into the CNS was dependent on integrin α3, and integrin α3 deficiency enhanced the retention of CD4+ T cells in the perivascular space of the blood-brain barrier. Integrin α3-dependent interactions continuously maintain TH17 cell identity and effector function. The requirement of integrin α3 in TH17 cell pathogenicity suggests integrin α3 as a therapeutic target for MS treatment.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Humanos , Integrina alfa3 , Enfermedades Neuroinflamatorias , Sistema Nervioso Central
2.
mBio ; 14(5): e0181023, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37737622

RESUMEN

IMPORTANCE: Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited, and the development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally active FDA-approved therapy. This research advances the development of much-needed newer antifungal treatment options with novel mechanisms of action.


Asunto(s)
Cryptococcus neoformans , Micosis , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Micosis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana
3.
bioRxiv ; 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37333270

RESUMEN

Fungal infections are of mounting global concern, and the current limited treatment arsenal poses challenges when treating such infections. In particular, infections by Cryptococcus neoformans are associated with high mortality, emphasizing the need for novel therapeutic options. Calcineurin is a protein phosphatase that mediates fungal stress responses, and calcineurin inhibition by the natural product FK506 blocks C. neoformans growth at 37°C. Calcineurin is also required for pathogenesis. However, because calcineurin is conserved in humans, and inhibition with FK506 results in immunosuppression, the use of FK506 as an anti-infective agent is precluded. We previously elucidated the structures of multiple fungal calcineurin-FK506-FKBP12 complexes and implicated the C-22 position on FK506 as a key point for differential modification of ligand inhibition of the mammalian versus fungal target proteins. Through in vitro antifungal and immunosuppressive testing of FK520 (a natural analog of FK506) derivatives, we identified JH-FK-08 as a lead candidate for further antifungal development. JH-FK-08 exhibited significantly reduced immunosuppressive activity and both reduced fungal burden and prolonged survival of infected animals. JH-FK-08 exhibited additive activity in combination with fluconazole in vivo . These findings further advance calcineurin inhibition as an antifungal therapeutic approach. Importance: Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited and development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally-active FDA approved therapy. This research advances the development of much needed newer antifungal treatment options with novel mechanisms of action.

4.
mBio ; 13(3): e0104922, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35604094

RESUMEN

Calcineurin is an essential virulence factor that is conserved across human fungal pathogens, including Cryptococcus neoformans, Aspergillus fumigatus, and Candida albicans. Although an excellent target for antifungal drug development, the serine-threonine phosphatase activity of calcineurin is conserved in mammals, and inhibition of this activity results in immunosuppression. FK506 (tacrolimus) is a naturally produced macrocyclic compound that inhibits calcineurin by binding to the immunophilin FKBP12. Previously, our fungal calcineurin-FK506-FKBP12 structure-based approaches identified a nonconserved region of FKBP12 that can be exploited for fungus-specific targeting. These studies led to the design of an FK506 analog, APX879, modified at the C-22 position, which was less immunosuppressive yet maintained antifungal activity. We now report high-resolution protein crystal structures of fungal FKBP12 and a human truncated calcineurin-FKBP12 bound to a natural FK506 analog, FK520 (ascomycin). Based on information from these structures and the success of APX879, we synthesized and screened a novel panel of C-22-modified compounds derived from both FK506 and FK520. One compound, JH-FK-05, demonstrates broad-spectrum antifungal activity in vitro and is nonimmunosuppressive in vivo. In murine models of pulmonary and disseminated C. neoformans infection, JH-FK-05 treatment significantly reduced fungal burden and extended animal survival alone and in combination with fluconazole. Furthermore, molecular dynamic simulations performed with JH-FK-05 binding to fungal and human FKBP12 identified additional residues outside the C-22 and C-21 positions that could be modified to generate novel FK506 analogs with improved antifungal activity. IMPORTANCE Due to rising rates of antifungal drug resistance and a limited armamentarium of antifungal treatments, there is a paramount need for novel antifungal drugs to treat systemic fungal infections. Calcineurin has been established as an essential and conserved virulence factor in several fungi, making it an attractive antifungal target. However, due to the immunosuppressive action of calcineurin inhibitors, they have not been successfully utilized clinically for antifungal treatment in humans. Recent availability of crystal structures of fungal calcineurin-bound inhibitor complexes has enabled the structure-guided design of FK506 analogs and led to a breakthrough in the development of a compound with increased fungal specificity. The development of a calcineurin inhibitor with reduced immunosuppressive activity and maintained therapeutic antifungal activity would add a significant tool to the treatment options for these invasive fungal infections with exceedingly high rates of mortality.


Asunto(s)
Cryptococcus neoformans , Tacrolimus , Animales , Antifúngicos/metabolismo , Antifúngicos/farmacología , Calcineurina/metabolismo , Inhibidores de la Calcineurina/farmacología , Cryptococcus neoformans/metabolismo , Imidazoles , Inmunosupresores/metabolismo , Inmunosupresores/farmacología , Mamíferos/metabolismo , Ratones , Sulfonamidas , Tacrolimus/farmacología , Proteína 1A de Unión a Tacrolimus/metabolismo , Tiofenos , Factores de Virulencia/metabolismo
6.
Front Immunol ; 12: 641188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828552

RESUMEN

Precisely controlled lymphocyte migration is critically required for immune surveillance and successful immune responses. Lymphocyte migration is strictly regulated by chemokines and chemokine receptors. Here we show that protein geranylgeranylation, a form of post-translational protein lipid modification, is required for chemokine receptor-proximal signaling. Mature thymocytes deficient for protein geranylgeranylation are impaired for thymus egress. Circulating mature T cells lacking protein geranylgeranylation fail to home to secondary lymphoid organs or to transmigrate in response to chemokines in vitro. Mechanistically, protein geranylgeranylation modifies the γ-subunits of the heterotrimeric small GTPases that are essential for chemokine receptor signaling. In addition, protein geranylgeranylation also promotes the differentiation of IL-17-producing T helper cells while inhibiting the differentiation of Foxp3+ regulatory T cells. Finally, mice with T cell lineage-specific deficiency of protein geranylgeranylation are resistant to experimental autoimmune encephalomyelitis induction. This study elucidated a critical role of protein geranylgeranylation in regulating T lymphocyte migration and function.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Prenilación de Proteína/inmunología , Receptores de Quimiocina/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular/inmunología , Ratones , Esclerosis Múltiple , Transducción de Señal/inmunología
7.
Cell Mol Life Sci ; 78(5): 2315-2328, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32975614

RESUMEN

Pattern-recognition receptors including Toll-like receptors (TLRs) recognize invading pathogens and trigger an immune response in mammals. Here we show that mammalian ste20-like kinase 1/serine/threonine kinase 4 (MST1/STK4) functions as a negative regulator of lipopolysaccharide (LPS)-induced activation of the TLR4-NF-κB signaling pathway associated with inflammation. Myeloid-specific genetic ablation of MST1/STK4 increased the susceptibility of mice to LPS-induced septic shock. Ablation of MST1/STK4 also enhanced NF-κB activation triggered by LPS in bone marrow-derived macrophages (BMDMs), leading to increased production of proinflammatory cytokines by these cells. Furthermore, MST1/STK4 inhibited TRAF6 autoubiquitination as well as TRAF6-mediated downstream signaling induced by LPS. In addition, we found that TRAF6 mediates the LPS-induced activation of MST1/STK4 by catalyzing its ubiquitination, resulting in negative feedback regulation by MST1/STK4 of the LPS-induced pathway leading to cytokine production in macrophages. Together, our findings suggest that MST1/STK4 functions as a negative modulator of the LPS-induced NF-κB signaling pathway during macrophage activation.


Asunto(s)
Macrófagos/metabolismo , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Células HEK293 , Humanos , Lipopolisacáridos/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/genética , Sepsis/sangre , Sepsis/genética , Sepsis/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Análisis de Supervivencia , Factor 6 Asociado a Receptor de TNF/genética , Receptor Toll-Like 4/genética , Ubiquitinación/efectos de los fármacos
8.
Nat Immunol ; 20(5): 663, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30816306

RESUMEN

In the version of this article initially published, the top right plot in Figure 4a was aligned incorrectly. The error has been corrected in the HTML and PDF versions of the article. The original and corrected figures are provided in the accompanying Publisher Correction.

9.
Nat Immunol ; 20(1): 73-85, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538336

RESUMEN

γδ T cells that produce the cytokine IL-17 (Tγδ17 cells) are innate-like mediators of immunity that undergo effector programming in the thymus. While regulators of Tγδ17 specialization restricted to various Vγ subsets are known, a commitment factor essential to all Tγδ17 cells has remained undefined. In this study, we identified the transcription factor c-Maf as a universal regulator of Tγδ17 cell differentiation and maintenance. Maf deficiency caused an absolute lineage block at the immature CD24+CD45RBlo γδ thymocyte stage, which revealed a critical checkpoint in the acquisition of effector functions. Here, c-Maf enforced Tγδ17 cell identity by promoting chromatin accessibility and expression of key type 17 program genes, notably Rorc and Blk, while antagonizing the transcription factor TCF1, which promotes interferon-γ-producing γδ T cells (Tγδ1 cells). Furthermore, γδ T cell antigen receptor (γδTCR) signal strength tuned c-Maf expression, which indicates that c-Maf is a core node that connects γδTCR signals to Tγδ17 cell transcriptional programming.


Asunto(s)
Interleucina-17/metabolismo , Proteínas Proto-Oncogénicas c-maf/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Células Th17/fisiología , Timocitos/fisiología , Animales , Antígeno CD24/metabolismo , Diferenciación Celular/genética , Linaje de la Célula/genética , Células Cultivadas , Inmunidad Innata , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Proteínas Proto-Oncogénicas c-maf/genética , Transducción de Señal , Familia-src Quinasas/genética
10.
Biochem Biophys Res Commun ; 489(1): 56-62, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28527887

RESUMEN

MST1 deficiency causes T and B cell lymphopenia, resulting in combined immunodeficiency. However, MST1-deficient patients also exhibit autoimmune-like symptoms such as hypergammaglobulinemia and autoantibody production. Recent studies have shown that the autoimmune responses observed in MST1-deficient patients were most likely attributable to defective regulatory T (Treg) cells instead of intrinsic signals in MST1-lacking B cells. Nevertheless, it is not determined how MST1 deficiency in T cells breaks B cell tolerance and causes systemic autoimmune-like phenotypes. In this study, we confirmed that Mst1-/- mice developed hypergammaglobulinemia associated with increased levels of IgG, IgA, and IgE. We also showed that uncontrolled B cell responses were resulted from the IL-4-rich environment created by CD4+ T cells. Defective MST1-FOXO1 signaling down-regulated Treg cells, resulting in the collapse of immune tolerance where the populations of Th2 and T follicular helper cells expanded. In conclusion, we suggest that MST1 acts as a molecular brake to maintain immune tolerance by regulating T cell-mediated B cell activation.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Factor de Crecimiento de Hepatocito/inmunología , Hipergammaglobulinemia/inmunología , Interleucina-4/inmunología , Proteínas Proto-Oncogénicas/inmunología , Animales , Factor de Crecimiento de Hepatocito/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas/deficiencia
11.
Int J Cancer ; 140(10): 2364-2374, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28224619

RESUMEN

Treatment of acute myeloid leukemia (AML) largely depends on chemotherapy, but current regimens have been unsatisfactory for long-term remission. Although differentiation induction therapy utilizing 1,25(OH)2 D3 (VD3) has shown great promise for the improvement of AML treatment efficacy, severe side effects caused by its supraphysiological dose limit its clinical application. Here we investigated the combinatorial effect of l-asparaginase (ASNase)-mediated amino acid depletion and the latent alternation of VD3 activity on the induction of myeloid differentiation. ASNase treatment enhanced VD3-driven phenotypic and functional differentiation of three-different AML cell lines into monocyte/macrophages, along with c-Myc downregulation. Using gene silencing with shRNA and a chemical blocker, we found that reduced c-Myc is a critical factor for improving VD3 efficacy. c-Myc-dependent inhibition of mTORC1 signaling and induction of autophagy were involved in the enhanced AML cell differentiation. In addition, in a postculture of AML cells after each treatment, ASNase supports the antileukemic effect of VD3 by inhibiting cell growth and inducing apoptosis. Finally, we confirmed that the administration of ASNase significantly improved VD3 efficacy in the prolongation of survival time in mice bearing tumor xenograft. Our results are the first to demonstrate the extended application of ASNase, which is currently used for acute lymphoid leukemia, in VD3-mediated differentiation induction therapy for AML, and suggest that this drug combination may be a promising novel strategy for curing AML.


Asunto(s)
Asparaginasa/metabolismo , Calcitriol/farmacología , Diferenciación Celular/efectos de los fármacos , Leucemia Mieloide Aguda/patología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Conservadores de la Densidad Ósea/farmacología , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Femenino , Humanos , Técnicas para Inmunoenzimas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Int Immunopharmacol ; 40: 508-516, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27756053

RESUMEN

CD4+ T cell activation and adequate differentiation into effector T helper (Th) cells are crucial for mediating adaptive immune responses to cope with foreign pathogens. Despite the significant role of Th cells, excessive increases in their numbers result in inflammatory and autoimmune diseases. In this study, we investigated the effects of costunolide, a plant-derived natural compound with an anti-inflammatory activity, in regulating Th cells and the underlying mechanisms. Costunolide significantly decreased cell populations of differentiated Th1, Th2, and Th17 subsets under Th subset-polarizing conditions, while exerting statistically negligible effects on Treg cell differentiation. Furthermore, costunolide inhibited the expression level of Th subset-polarizing master genes such as T-bet, GATA3, and RORγt, indicating that costunolide inhibits the differentiation of CD4+ T cells into Th subsets. Additionally, costunolide suppressed the proliferative activity of CD4+ T cells and the expression of CD69 activation marker on CD4+ T cells. When the molecular targets of costunolide were investigated, phosphorylation of ERK and p38 was found to be decreased under Th subset-polarizing conditions, whereas activity of JNK remained unchanged. U0126, an ERK inhibitor, and SB203580, a p38 inhibitor, decreased the expression of CD69 upon TCR stimulation and inhibited CD4+ T cell differentiation, indicating that both ERK and p38 are suggested to be critical molecular targets of costunolide. Taken together, these results suggest that costunolide inhibits the differentiation of CD4+ T cells by suppressing ERK and p38 activities and can be an effective therapeutic agent for T cell-mediated immune diseases.


Asunto(s)
Antiinflamatorios/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sesquiterpenos/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Mediadores de Inflamación/metabolismo , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...