Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Probiotics Antimicrob Proteins ; 15(4): 1001-1013, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37178405

RESUMEN

Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolongs the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A2A) on T cells. We hypothesized that L. reuteri-derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut, and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73+CD8+ T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.


Asunto(s)
5'-Nucleotidasa , Adenosina , Humanos , Animales , Ratones , 5'-Nucleotidasa/genética , 5'-Nucleotidasa/metabolismo , Linfocitos T Reguladores/metabolismo , Linfocitos T CD8-positivos/metabolismo , Antiinflamatorios , Inosina
2.
Res Sq ; 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37066419

RESUMEN

Probiotic Limosilactobacillus reuteri DSM 17938 (DSM 17938) prolonges the survival of Treg-deficient scurfy (SF) mice and reduces multiorgan inflammation by a process requiring adenosine receptor 2A (A 2A ) on T cells. We hypothesized that L. reuteri -derived ecto-5'-nucleotidase (ecto-5'NT) activity acts to generate adenosine, which may be a central mediator for L. reuteri protection in SF mice. We evaluated DSM 17938-5'NT activity and the associated adenosine and inosine levels in plasma, gut and liver of SF mice. We examined orally fed DSM 17938, DSM 17938Δ5NT (with a deleted 5'NT gene), and DSM 32846 (BG-R46) (a naturally selected strain derived from DSM 17938). Results showed that DSM 17938 and BG-R46 produced adenosine while "exhausting" AMP, whereas DSM 17938∆5NT did not generate adenosine in culture. Plasma 5'NT activity was increased by DSM 17938 or BG-R46, but not by DSM 17938Δ5NT in SF mice. BG-R46 increased both adenosine and inosine levels in the cecum of SF mice. DSM 17938 increased adenosine levels, whereas BG-R46 increased inosine levels in the liver. DSM 17938Δ5NT did not significantly change the levels of adenosine or inosine in the GI tract or the liver of SF mice. Although regulatory CD73 + CD8 + T cells were decreased in spleen and blood of SF mice, these regulatory T cells could be increased by orally feeding DSM 17938 or BG-R46, but not DSM 17938Δ5NT. In conclusion, probiotic-5'NT may be a central mediator of DSM 17938 protection against autoimmunity. Optimal 5'NT activity from various probiotic strains could be beneficial in treating Treg-associated immune disorders in humans.

3.
Pediatr Neurol ; 140: 52-58, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36640519

RESUMEN

BACKGROUND: Temporal lobe changes, such as anterior temporal lobe meningoceles or encephaloceles, have been documented as possible epileptogenic foci in a subset of pediatric patients with seizures. In our study, we aim to analyze a different structural change in the temporal lobe, remodeling of the posterior temporal skull base by the inferior temporal gyrus called the "temporal thumb sign" (TTS), in pediatric patients presenting with new-onset seizures with or without elevated opening pressure (OP), patients presenting with confirmed diagnosis of idiopathic intracranial hypertension (IIH) without seizure presentation, and healthy controls. METHODS: Magnetic resonance imaging scans of 163 pediatric patients were studied retrospectively for the presence of TTS. We analyzed the scans of 43 patients with elevated OP and confirmed IIH, 40 patients with elevated OP and new-onset idiopathic seizures, 40 patients with normal OP and new-onset idiopathic seizures, and 40 age- and sex-matched healthy controls. RESULTS: The TTS was detected most frequently in patients with elevated OP and seizures at 72.5% compared with patients with IIH with no seizures and patients with normal OP and seizures (32.6% and 27.5%, respectively). The TTS had a frequency of 12.5% in the control group. The TTS had the highest combination of specificity and sensitivity (72.5% and 72.5%) in patients with seizures and elevated OP compared with patients with seizures and normal OP (P value < 0.001). CONCLUSIONS: Our results suggest the Kamali "temporal thumb sign" is a novel imaging feature that may be used as a sensitive and specific imaging finding associated with seizures and elevated OP in the pediatric population.


Asunto(s)
Seudotumor Cerebral , Humanos , Niño , Estudios Retrospectivos , Seudotumor Cerebral/diagnóstico , Presión del Líquido Cefalorraquídeo , Encefalocele/complicaciones , Lóbulo Temporal , Imagen por Resonancia Magnética/métodos
4.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G969-G981, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33787352

RESUMEN

Treg deficiency causes a lethal, CD4+ T cell-driven autoimmune disease called IPEX syndrome (immunodysregulation, polyendocrinopathy, and enteropathy, with X-linked inheritance) in humans and in the scurfy (SF) mouse, a mouse model of the disease. Feeding Limosilactobacillus reuteri DSM 17938 (LR 17938, LR) to SF mice reprograms the gut microbiota, reduces disease progression, and prolongs lifespan. However, the efficacy and mechanism of LR, compared with other probiotics, in producing these effects is unknown. We compared LR with Lacticaseibacillus rhamnosus GG (LGG), an extensively investigated probiotic. LR was more effective than LGG in prolonging survival. Both probiotics restored the fecal microbial alpha diversity, but they produced distinct fecal bacterial clusters and differentially modulated microbial relative abundance (RA). LR increased the RA of phylum_Firmicutes, genus_Oscillospira whereas LR reduced phylum_Bacteroidetes, genus_Bacteroides and genus_Parabacteroides, reversing changes attributed to the SF phenotype. LGG primarily reduced the RA of genus_Bacteroides. Both LR and LGG reduced the potentially pathogenic taxon class_γ-proteobacteria. Plasma metabolomics revealed substantial differences among 696 metabolites. We observed similar changes of many clusters of metabolites in SF mice associated with treatment with either LR or LGG. However, a unique effect of LR was to increase the abundance of plasma adenosine metabolites such as inosine, which we previously showed had immune modulatory effects. In conclusion: 1) different probiotics produce distinct signatures in the fecal microbial community in mice with Treg deficiency; and 2) when comparing different probiotics, there are strain-specific microbial products with different anti-inflammatory properties, reinforcing the concept that "one size does not fit all" in the treatment of autoimmune disease.NEW & NOTEWORTHY In the treatment of Treg-deficiency-induced autoimmunity, Limosilactobacillus reuteri DSM 17938 (LR) showed greater efficacy than Lacticaseibacillus rhamnosus GG (LGG). The study demonstrated that two different probiotics produce distinct signatures in the fecal microbial community in mice with Treg deficiency, but with many similarities in global plasma metabolites in general. However, there are strain-specific microbial products with different anti-inflammatory properties, reinforcing the concept that "one size does not fit all" in the treatment of autoimmune disease.


Asunto(s)
Diabetes Mellitus Tipo 1/congénito , Diarrea/microbiología , Microbioma Gastrointestinal/inmunología , Enfermedades Genéticas Ligadas al Cromosoma X/microbiología , Enfermedades del Sistema Inmune/congénito , Lacticaseibacillus rhamnosus , Limosilactobacillus reuteri , Linfocitos T Reguladores/inmunología , Animales , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiología , Diarrea/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Enfermedades del Sistema Inmune/metabolismo , Enfermedades del Sistema Inmune/microbiología , Ratones , Ratones Transgénicos , Probióticos , Linfocitos T Reguladores/metabolismo , Linfocitos T Reguladores/microbiología
5.
Pediatr Res ; 90(5): 980-988, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33531679

RESUMEN

BACKGROUND: Probiotic Lactobacillus reuteri DSM 17938 (LR 17938) is beneficial to infants with colic. To understand its mechanism of action, we assessed ultrasonic vocalizations (USV) and brain pain/stress genes in newborn mice exposed to maternal separation stress. METHODS: Pups were exposed to unpredictable maternal separation (MSU or SEP) or MSU combined with unpredictable maternal stress (MSU + MSUS or S + S), from postnatal days 5 to 14. USV calls and pain/stress/neuroinflammation-related genes in the brain were analyzed. RESULTS: We defined 10 different neonatal call patterns, none of which increased after MSU. Stress reduced overall USV calls. Orally feeding LR 17938 also did not change USV calls after MSU. However, LR 17938 markedly increased vocalizations in mice allowed to stay with their dams. Even though LR 17938 did not change MSU-related calls, LR 17938 modulated brain genes related to stress and pain. Up-regulated genes following LR 17938 treatment were opioid peptides, kappa-opioid receptor 1 genes, and CD200, important in anti-inflammatory signaling. LR 17938 down-regulated CCR2 transcripts, a chemokine receptor, in the stressed neonatal brain. CONCLUSIONS: USV calls in newborn mice are interpreted as "physiological calls" instead of "cries." Feeding LR 17938 after MSU did not change USV calls but modulated cerebral genes favoring pain and stress reduction and anti-inflammatory signaling. IMPACT: We defined mouse ultrasonic vocalization (USV) call patterns in this study, which will be important in guiding future studies in other mouse strains. Newborn mice with maternal separation stress have reduced USVs, compared to newborn mice without stress, indicating USV calls may represent "physiological calling" instead of "crying." Oral feeding of probiotic Lactobacillus reuteri DSM 17938 raised the number of calls when newborn mice continued to suckle on their dams, but not when mice were under stress. The probiotic bacteria had a dampening effect on monocyte activation and on epinephrine and glutamate-related stress gene expression in the mouse brain.


Asunto(s)
Animales Recién Nacidos , Limosilactobacillus reuteri , Privación Materna , Probióticos , Comunicación Animal , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Am J Pathol ; 191(4): 704-719, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33516788

RESUMEN

The intestinal microbiota influences the development and function of the mucosal immune system. However, the exact mechanisms by which commensal microbes modulate immunity is not clear. We previously demonstrated that commensal Bacteroides ovatus ATCC 8384 reduces mucosal inflammation. Herein, we aimed to identify immunomodulatory pathways employed by B. ovatus. In germ-free mice, mono-association with B. ovatus shifted the CD11b+/CD11c+ and CD103+/CD11c+ dendritic cell populations. Because indole compounds are known to modulate dendritic cells, B. ovatus cell-free supernatant was screened for tryptophan metabolites by liquid chromatography-tandem mass spectrometry and larger quantities of indole-3-acetic acid were detected. Analysis of cecal and fecal samples from germ-free and B. ovatus mono-associated mice confirmed that B. ovatus could elevate indole-3-acetic acid concentrations in vivo. Indole metabolites have previously been shown to stimulate immune cells to secrete the reparative cytokine IL-22. Addition of B. ovatus cell-free supernatant to immature bone marrow-derived dendritic cells stimulated IL-22 secretion. The ability of IL-22 to drive repair in the intestinal epithelium was confirmed using a physiologically relevant human intestinal enteroid model. Finally, B. ovatus shifted the immune cell populations in trinitrobenzene sulfonic acid-treated mice and up-regulated colonic IL-22 expression, effects that correlated with decreased inflammation. Our data suggest that B. ovatus-produced indole-3-acetic acid promotes IL-22 production by immune cells, yielding beneficial effects on colitis.


Asunto(s)
Bacteroides/efectos de los fármacos , Colon/metabolismo , Inflamación/tratamiento farmacológico , Interleucinas/metabolismo , Ácido Trinitrobencenosulfónico/farmacología , Animales , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/efectos de los fármacos , Citocinas/metabolismo , Sulfato de Dextran/metabolismo , Humanos , Inflamación/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Ratones , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...