Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 873
Filtrar
1.
Cells ; 13(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39273017

RESUMEN

PAK4 and PD-L1 have been suggested as novel therapeutic targets in human cancers. Moreover, PAK4 has been suggested to be a molecule closely related to the immune evasion of cancers. Therefore, this study evaluated the roles of PAK4 and PD-L1 in the progression of osteosarcomas in 32 osteosarcomas and osteosarcoma cells. In human osteosarcomas, immunohistochemical positivity for the expression of PAK4 (overall survival, p = 0.028) and PD-L1 (relapse-free survival, p = 0.002) were independent indicators for the survival of patients in a multivariate analysis. In osteosarcoma cells, the overexpression of PAK4 increased proliferation and invasiveness, while the knockdown of PAK4 suppressed proliferation and invasiveness. The expression of PAK4 was associated with the expression of the molecules related to cell cycle regulation, invasion, and apoptosis. PAK4 was involved in resistance to apoptosis under a treatment regime with doxorubicin for osteosarcoma. In U2OS cells, PAK4 was involved in the stabilization of PD-L1 from ubiquitin-mediated proteasomal degradation and the in vivo infiltration of immune cells such as regulatory T cells and PD1-, CD4-, and CD8-positive cells in mice tumors. In conclusion, this study suggests that PAK4 is involved in the progression of osteosarcoma by promoting proliferation, invasion, and resistance to doxorubicin and stabilized PD-L1 from proteasomal degradation.


Asunto(s)
Antígeno B7-H1 , Proliferación Celular , Doxorrubicina , Resistencia a Antineoplásicos , Osteosarcoma , Quinasas p21 Activadas , Osteosarcoma/patología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Osteosarcoma/genética , Humanos , Antígeno B7-H1/metabolismo , Femenino , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Animales , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/genética , Masculino , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/genética , Adulto , Adolescente , Estabilidad Proteica/efectos de los fármacos , Ratones Desnudos , Adulto Joven , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Invasividad Neoplásica
2.
3.
Artículo en Inglés | MEDLINE | ID: mdl-39327722

RESUMEN

The strategic design of a heterostructure catalyst with a core-shell nanoarchitecture is imperative for enhancing the efficiency of the electrocatalytic hydrogen evolution reaction (HER). Herein, the core-shell catalyst comprising the rhenium disulfide nanosheets was vertically integrated onto a hollow nickel sulfide (NiS@ReS2) via coprecipitation and hydrothermal treatment. The morphology involves the sulfurization of a nickel-based Prussian blue analogue, effectively mitigating the aggregation of ReS2 nanosheets and maximizing the exposed active sites. By the synergistic effect of morphological design and heterostructure formation, the overpotential of NiS@ReS2 is 136 mV at 10 mA cm-2 in an alkaline electrolyte, and the rapid kinetics is confirmed by the small Tafel slope and low charge transfer resistance during the HER process. Moreover, the electrocatalytic durability of NiS@ReS2 is elucidated, and the boosted catalytic activity of NiS@ReS2 is confirmed by density functional theory. This study unveils a promising method for advancing ReS2-based electrocatalysts with potential implications for producing hydrogen.

4.
Small ; : e2405548, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39295494

RESUMEN

Hexagonal boron nitride (BN), a well-known member of 2D materials, has a structure similar to graphene and is often referred to as white graphene. Despite its unique physical and chemical properties for energy storage applications, there have been very few studies on how BN stores anion carriers. Herein, the hybrid architecture and anion storage mechanism of BN nanosheets for high-performance hybrid energy storage full cells based on dual-ion and Zinc (Zn) alkaline systems is demonstrated. The chemical bonding between BN and reduced graphene oxide (rGO) is attributed to the formation of the heterointerface, which facilitates the charge transfer kinetics during an OH storing process. Based on the reversible surface redox reaction of BN and rGO hybrid (BN@rGO) confirmed by computational and spectroscopic analyses, the BN@rGO electrode is applied to both Na and OH dual-ion and Zn alkaline full cells. In the dual-ion system, Ti3C2‖BN@rGO full cells extended the operating voltage range up to 1.7 V, delivering a cell capacity of 49.4 mAh g-1 at 1000 mA g-1 and retaining 80% of its initial capacity after 40 000 cycles. In the Zn alkaline system, Zn‖BN@rGO full cells achieved a cell capacity of 58.1 mAh g-1 at 1000 mA g-1 and retained 80% capacity over 90 000 cycles.

5.
Oncol Lett ; 28(5): 535, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39290953

RESUMEN

The long survival of patients with primary cancer increases the chance of such patients developing second primary cancer (SPC). The development of SPC in cancer survivors exerts a large psychological, social and economic burden on patients and their families. The aim of the present study was to assess the risk of cancer survivors developing SPC. The study included patients who had been diagnosed with a first primary cancer in five organs (stomach, colorectum, lung, breast and thyroid), which are the five most common sites of cancer in patients from Korea, at the regional cancer center in Jeonbuk National University Hospital between January 2007 and December 2009. The standardized incidence ratio (SIR) of SPC according to sex and site was calculated from 5,209 patients who were followed up to September 2017. General incidence was acquired from the National Cancer Registry of Republic of Korea. SPC occurred in 6.2% (323/5,209) of patients, and the incidence of SPC among the five major types of cancer was in the order of breast (8.8%, 46/524), colorectum (8.6%, 86/1,003), gastric (6.6%, 89/1,358), thyroid (4.7%, 67/1,437) and lung cancer (3.9%, 35/887). When all SPC sites were included, the SIRs of SPC in patients with colorectal cancer and breast cancer were >1.0 (1.21 and 1.66, respectively). Breast cancer and thyroid cancer exhibited a high site relationship (P<0.05), and colorectal cancer had a high site relationship with gastric cancer (P<0.05). The present study analyzed the incidence and pattern of SPC in patients with cancer who were diagnosed with primary carcinoma in five organs. The results of the study may be useful for effective follow-up and early detection of SPC in patients with cancer.

6.
Biochem Biophys Res Commun ; 733: 150707, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39303524

RESUMEN

The excessive consumption of dietary sugar induces changes in gut microbiota, which is associated with obesity and metabolic dysregulation. This study investigated the effects of monosaccharide and fructooligosaccharide (FOS) intake on metabolic function and intestinal environment in germ-free (GF) mice lacking gut microbiota. GF mice were provided with a chow diet and administered a water solution containing 15 % glucose, fructose, or FOS for 4 weeks. Compared with FOS, glucose, and fructose induced increased hepatic lipid accumulation, increased adipocyte size in white adipose tissue, and upregulated hepatic lipogenic gene expression. FOS exhibited notably higher activation of hepatic AMP-activated protein kinase compared with those consuming glucose or fructose. Moreover, the number of goblet cells in the intestinal mucosa increased significantly with FOS consumption. Collectively, these findings indicate that while monosaccharides caused metabolic disorders in GF mice, FOS alleviated these disorders and increased the number of goblet cells in the intestinal mucosa. These results provide evidence for the occurrence of these effects independently of the gut microbiota.

7.
Inorg Chem ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321124

RESUMEN

The design of bimetallic metal-organic frameworks (MOFs) with a hierarchical structure is important to improve the electrocatalytic performance of catalysts due to their synergistic effect on different metal ions. In this work, the catalyst comprises bimetallic iron-nickel MOF-derived FeNi phosphides, intricately integrated with phosphorus-doped reduced graphene oxide architectures (FeNi2P-C/P-rGA) through the hydrothermal and phosphating treatments. The hierarchical architecture of the catalyst is beneficial for exposing active sites and facilitating electron transfer. The FeNi2P-C/P-rGA catalyst exhibits excellent performance in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolytes. Notably, FeNi2P-C/P-rGA requires only the overpotential of 93 and 210 mV to achieve a current density of 10 mA cm-2 for the HER and OER with small values of Tafel slope and charge transfer resistance, respectively. Furthermore, the catalyst exhibits boosted activity for overall water splitting with a low potential of 1.56 V. This work can be considered to extend the design of multilevel catalysts in the application of water splitting.

8.
Radiology ; 312(1): e240273, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38980179

RESUMEN

Background The diagnostic abilities of multimodal large language models (LLMs) using direct image inputs and the impact of the temperature parameter of LLMs remain unexplored. Purpose To investigate the ability of GPT-4V and Gemini Pro Vision in generating differential diagnoses at different temperatures compared with radiologists using Radiology Diagnosis Please cases. Materials and Methods This retrospective study included Diagnosis Please cases published from January 2008 to October 2023. Input images included original images and captures of the textual patient history and figure legends (without imaging findings) from PDF files of each case. The LLMs were tasked with providing three differential diagnoses, repeated five times at temperatures 0, 0.5, and 1. Eight subspecialty-trained radiologists solved cases. An experienced radiologist compared generated and final diagnoses, considering the result correct if the generated diagnoses included the final diagnosis after five repetitions. Accuracy was assessed across models, temperatures, and radiology subspecialties, with statistical significance set at P < .007 after Bonferroni correction for multiple comparisons across the LLMs at the three temperatures and with radiologists. Results A total of 190 cases were included in neuroradiology (n = 53), multisystem (n = 27), gastrointestinal (n = 25), genitourinary (n = 23), musculoskeletal (n = 17), chest (n = 16), cardiovascular (n = 12), pediatric (n = 12), and breast (n = 5) subspecialties. Overall accuracy improved with increasing temperature settings (0, 0.5, 1) for both GPT-4V (41% [78 of 190 cases], 45% [86 of 190 cases], 49% [93 of 190 cases], respectively) and Gemini Pro Vision (29% [55 of 190 cases], 36% [69 of 190 cases], 39% [74 of 190 cases], respectively), although there was no evidence of a statistically significant difference after Bonferroni adjustment (GPT-4V, P = .12; Gemini Pro Vision, P = .04). The overall accuracy of radiologists (61% [115 of 190 cases]) was higher than that of Gemini Pro Vision at temperature 1 (T1) (P < .001), while no statistically significant difference was observed between radiologists and GPT-4V at T1 after Bonferroni adjustment (P = .02). Radiologists (range, 45%-88%) outperformed the LLMs at T1 (range, 24%-75%) in most subspecialties. Conclusion Using direct radiologic image inputs, GPT-4V and Gemini Pro Vision showed improved diagnostic accuracy with increasing temperature settings. Although GPT-4V slightly underperformed compared with radiologists, it nonetheless demonstrated promising potential as a supportive tool in diagnostic decision-making. © RSNA, 2024 See also the editorial by Nishino and Ballard in this issue.


Asunto(s)
Radiólogos , Humanos , Estudios Retrospectivos , Diagnóstico Diferencial , Interpretación de Imagen Asistida por Computador/métodos , Femenino
9.
Adv Sci (Weinh) ; 11(35): e2404419, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39018250

RESUMEN

Herein, hierarchically structured microgrid frameworks of Co3O4 and carbon composite deposited on reduced graphene oxide (Co3O4@C/rGO) are demonstrated through the three-dimensioinal (3D) printing method, where the porous structure is controllable and the height and width are scalable, for dendrite-free Na metal deposition. The sodiophilicity, facile Na metal deposition kinetics, and NaF-rich solid electrolyte interphase (SEI) formation of cubic Co3O4 phase are confirmed by combined spectroscopic and computational analyses. Moreover, the uniform and reversible Na plating/stripping process on 3D-printed Co3O4@C/rGO host is monitored in real time using in situ transmission electron and optical microscopies. In symmetric cells, the 3D printed Co3O4@C/rGO electrode achieves a long-term stability over 3950 at 1 mA cm-2 and 1 mAh cm-2 with a superior Coulombic efficiency (CE) of 99.87% as well as 120 h even at 20 mA cm-2 and 20 mAh cm-2, far exceeding the previously reported carbon-based hosts for Na metal anodes. Consequently, the full cells of 3D-printed Na@Co3O4@C/rGO anode with 3D-printed Na3V2(PO4)3@C-rGO cathode (≈15.7 mg cm-2) deliver the high specific capacity of 97.97 mAh g-1 after 500 cycles with a high CE of 99.89% at 0.5 C, demonstrating the real operation of flexible Na metal batteries.

10.
J Hazard Mater ; 477: 135287, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39053059

RESUMEN

Charged natural chalcopyrite (CuFeS2, Ncpy) was developed for a three-dimensional electrochemical nitrate reduction (3D ENO3-RR) system with carbon fiber cloth cathode and Ti/IrO2 anode and Zn-NO3- battery. The 3D ENO3-RR system with Ncpy particle electrodes (PEs) possessed superior nitrate removal of 95.6 % and N2 selectivity of 76 % with excellent reusability under a broad pH range of 2-13 involving heterogeneous and homogeneous radical mechanisms. The Zn-NO3- battery with Ncpy cathode delivered an open-circuit voltage of 1.03 V and a cycling stability over 210 h. It was found that Ncpy PEs functioned through self-oxidation, surface dynamic reconstruction (Cu1.02Fe1.0S1.72O1.66 to Cu0.61Fe1.0S0.27O2.98), intrinsic micro-electric field (CuI, S2- anodic and FeIII cathodic poles), and reactive species (•OH, SO4•-, 1O2, •O2- and •H) generation. Computational analyses reveal that CuFeS2(112) surface with the lowest surface energy preferentially exposes Fe and Cu atoms. Cu site is beneficial for reducing NO3- to NO2-, Fe and Fe-Cu dual sites are conducive to N2 selectivity, lowering the overall reaction barriers. It paves the way for selective NO3- reduction in wastewater treatment and can be further extended to energy storage devices by utilizing low-cost Ncpy.

11.
J Am Chem Soc ; 146(31): 21320-21334, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39058278

RESUMEN

The high-entropy silicon anodes are attractive for enhancing electronic and Li-ionic conductivity while mitigating volume effects for advanced Li-ion batteries (LIBs), but are plagued by the complicated elements screening process. Inspired by the resemblances in the structure between sphalerite and diamond, we have selected sphalerite-structured SiP with metallic conductivity as the parent phase for exploring the element screening of high-entropy silicon-based anodes. The inclusion of the Zn in the sphalerite structure is crucial for improving the structural stability and Li-storage capacity. Within the same group, Li-storage performance is significantly improved with increasing atomic number in the order of BZnSiP3 < AlZnSiP3 < GaZnSiP3 < InZnSiP3. Thus, InZnSiP3-based electrodes achieved a high capacity of 719 mA h g-1 even after 1,500 cycles at 2,000 mA g-1, and a high-rate capacity of 725 mA h g-1 at 10,000 mA g-1, owing to its superior lithium-ion affinity, faster electronic conduction and lithium-ion diffusion, higher Li-storage capacity and reversibility, and mechanical integrity than others. Additionally, the incorporation of elements with larger atomic sizes leads to greater lattice distortion and more defects, further facilitating mass and charge transport. Following these screening rules, high-entropy disordered-cation silicon-based compounds such as GaCuSnInZnSiP6, GaCu(or Sn)InZnSiP5, and CuSnInZnSiP5, as well as high-entropy compounds with mixed-cation and -anion compositions, such as InZnSiPSeTe and InZnSiP2Se(or Te), are synthesized, demonstrating improved Li-storage performance with metallic conductivity. The phase formation mechanism of these compounds is attributed to the negative formation energies arising from elevated entropy.

12.
Mol Nutr Food Res ; 68(16): e2400260, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38962859

RESUMEN

SCOPE: Long-term consumption of excessive dietary advanced glycation end-products such as Nε-carboxymethyl-lysine (CML), which are produced by the Maillard reaction during food thermal processing, leads to nonalcoholic fatty liver disease (NAFLD) along with high fat consumption. The study previously finds that administration of Lactococcus lactis KF140 (LL-KF140) detoxifies CML by decreasing CML absorption both in a rat model and clinical trial. METHODS AND RESULTS: The present study evaluates the ameliorative effect of LL-KF140 on NAFLD and fatty liver-related biomarkers in a mouse model induced by CML and high fat. LL-KF140 is orally administered to mice at a concentration of 1 × 107 or 1 × 108 colony-forming unit (CFU) per mouse for 8 weeks. LL-KF140 administration ameliorates the NAFLD-related symptoms by reducing body weight and fat mass gain along with levels of serum aspartate transaminase, alanine transferase, and lipids as well as glucose intolerance and insulin resistance in CML-treated mice. In addition, histological analysis including staining and western blotting shows that LL-KF140 suppresses the lipogenesis pathway and CML absorption, thereby suppressing CML-induced NAFLD. CONCLUSION: These findings suggest that LL-KF140 attenuates dietary CML-induced NAFLD by suppressing the de novo lipogenesis pathway, and it may be used as a probiotic strain.


Asunto(s)
Dieta Alta en Grasa , Lactococcus lactis , Lisina , Enfermedad del Hígado Graso no Alcohólico , Probióticos , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Lisina/análogos & derivados , Lisina/farmacología , Masculino , Dieta Alta en Grasa/efectos adversos , Probióticos/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones , Resistencia a la Insulina , Lipogénesis/efectos de los fármacos , Alanina Transaminasa/sangre
13.
J Ethnopharmacol ; 333: 118443, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38909828

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Orostachys japonica (rock pine) has been used as a folk remedy to treat inflammation, hepatitis, and cancer in East Asia. AIM OF THE STUDY: The aim of this study was to investigate the effect of rock pine extract (RPE) on high-fat diet-induced obesity in mice and to examine its effects on gut dysbiosis. MATERIALS AND METHODS: The characteristic compound of RPE, kaempferol-3-O-rutinoside, was quantified using high-performance liquid chromatography. The prebiotic potential of RPE was evaluated by assessing the prebiotic activity score obtained using four prebiotic strains and high-fat (HF)-induced obesity C57BL/6 mice model. Analysis included examining the lipid metabolism and inflammatory proteins and evaluating the changes in gut permeability and metabolites to elucidate the potential signaling pathways involved. RESULTS: In vitro, RPE enhanced the proliferation of beneficial probiotic strains, including Lactiplantibacillus and Bifidobacterium. HF-induced model showed that the administration of 100 mg/kg/day of RPE for 8 weeks significantly (p < 0.05) reduced the body weight, serum lipid levels, and insulin resistance, which were associated with notable changes in lipid metabolism and inflammation-related markers. CONCLUSIONS: Our results demonstrate that rock pine consumption could mitigate obesity and metabolic endotoxemia in HF-fed mice through enhancing intestinal environment.


Asunto(s)
Dieta Alta en Grasa , Disbiosis , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Obesidad , Extractos Vegetales , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Disbiosis/tratamiento farmacológico , Masculino , Microbioma Gastrointestinal/efectos de los fármacos , Extractos Vegetales/farmacología , Ratones , Crassulaceae/química , Prebióticos , Metabolismo de los Lípidos/efectos de los fármacos , Resistencia a la Insulina
14.
Sci Total Environ ; 943: 173743, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848906

RESUMEN

This study utilizes machine learning (ML) algorithms to develop a robust total organic carbon (TOC) prediction model for river waters in the Geumho River sub-basins, South Korea, considering both non-rain and rain events. The model incorporates geospatial parameters such as land use, slope, flow rate, and basic water quality metrics including biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and suspended solids (SS). A key aspect of this research is examining how land use information enhances the model's predictive accuracy. We compared two ML algorithms-extreme gradient boosting (XGBoost) and deep neural networks (DNN)-with a traditional multiple linear regression (MLR) approach. XGBoost outperformed the others, achieving an R2 value between 0.61 and 0.68 in the test dataset and demonstrating significant improvement during rain events with an R2 of 0.77 when including land use data. In contrast, this enhancement was not observed with the MLR model. Feature importance analysis using Shapley values highlighted COD as the primary predictor for non-rain events, while during rain events, COD, TP, TN, SS and agricultural land collectively influenced TOC levels. This study significantly advances understanding of TOC variability across different land use scenarios in river systems and underscores the importance of integrating geospatial and water quality parameters to enhance TOC prediction, particularly during rain events. This methodology provides a valuable framework for developing river management strategies and monitoring long-term TOC trends, especially in scenarios with gaps in essential monitoring data.

15.
PNAS Nexus ; 3(6): pgae213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881843

RESUMEN

Intrinsic impediments, namely weak mechanical strength, low ionic conductivity, low electrochemical performance, and stability have largely inhibited beyond practical applications of hydrogels in electronic devices and remains as a significant challenge in the scientific world. Here, we report a biospecies-derived genomic DNA hybrid gel electrolyte with many synergistic effects, including robust mechanical properties (mechanical strength and elongation of 6.98 MPa and 997.42%, respectively) and ion migration channels, which consequently demonstrated high ionic conductivity (73.27 mS/cm) and superior electrochemical stability (1.64 V). Notably, when applied to a supercapacitor the hybrid gel-based devices exhibit a specific capacitance of 425 F/g. Furthermore, it maintained rapid charging/discharging with a capacitance retention rate of 93.8% after ∼200,000 cycles while exhibiting a maximum energy density of 35.07 Wh/kg and a maximum power density of 193.9 kW/kg. This represents the best value among the current supercapacitors and can be immediately applied to minicars, solar cells, and LED lightning. The widespread use of DNA gel electrolytes will revolutionize human efforts to industrialize high-performance green energy.

16.
Adv Sci (Weinh) ; 11(31): e2404997, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888516

RESUMEN

The fabrication of environmentally benign, solvent-processed, efficient, organic photovoltaic sub-modules remains challenging due to the rapid aggregation of the current high performance non-fullerene acceptors (NFAs). In this regard, design of new NFAs capable of achieving optimal aggregation in large-area organic photovoltaic modules has not been realized. Here, an NFA named BTA-HD-Rh is synthesized with longer (hexyl-decyl) side chains that exhibit good solubility and optimal aggregation. Interestingly, integrating a minute amount of new NFA (BTA-HD-Rh) into the PM6:L8-BO system enables the improved solubility in halogen-free solvents (o-xylene:carbon disulfide (O-XY:CS2)) with controlled aggregation is found. Then solar sub-modules are fabricated at ambient condition (temperature at 25 ± 3 °C and humidity: 30-45%). Ultimately, the champion 55 cm2 sub-modules achieve exciting efficiency of >16% in O-XY:CS2 solvents, which is the highest PCE reported for sub-modules. Notably, the highest efficiency of BTA-HD-Rh doped PM6:L8-BO is very well correlated with high miscibility with low Flory-Huggins parameter (0.372), well-defined nanoscale morphology, and high charge transport. This study demonstrates that a careful choice of side chain engineering for an NFA offers fascinating features that control the overall aggregation of active layer, which results in superior sub-module performance with environmental-friendly solvents.

17.
Food Res Int ; 187: 114417, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763667

RESUMEN

Resistant starch serves as a prebiotic in the large intestine, aiding in the maintenance of a healthy intestinal environment and mitigating associated chronic illnesses. This study aimed to investigate the impact of resistant starch-enriched brown rice (RBR) on intestinal health and functionality. We assessed changes in resistant starch concentration, structural alterations, and branch chain length distribution throughout the digestion process using an in vitro model. The efficacy of RBR in the intestinal environment was evaluated through analyses of its prebiotic potential, effects on intestinal microbiota, and intestinal function-related proteins in obese animals fed a high-fat diet. RBR exhibited a higher yield of insoluble fraction in both the small and large intestines compared to white and brown rice. The total digestible starch content decreased, while the resistant starch content significantly increased during in vitro digestion. Furthermore, RBR notably enhanced the growth of four probiotic strains compared to white and brown rice, displaying higher proliferation activity than the positive control, FOS. Notably, consumption of RBR by high-fat diet-induced obese mice suppressed colon shortening, increased Bifidobacteria growth, and improved intestinal permeability. These findings underscore the potential prebiotic and gut health-promoting attributes of RBR, offering insights for the development of functional foods aimed at preventing gastrointestinal diseases.


Asunto(s)
Dieta Alta en Grasa , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Obesidad , Oryza , Prebióticos , Almidón , Animales , Oryza/química , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Almidón/metabolismo , Masculino , Obesidad/metabolismo , Ratones Obesos , Almidón Resistente , Probióticos , Digestión , Bifidobacterium/crecimiento & desarrollo
18.
ACS Appl Mater Interfaces ; 16(20): 26743-26756, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38733403

RESUMEN

In this work, we explore the use of ring-opening metathesis polymerization (ROMP) facilitated by a second-generation Grubbs catalyst (G2) for the development of advanced polymer membranes aimed at CO2 separation. By employing a novel copolymer blend incorporating 4,4'-oxidianiline (ODA), 1,6-hexanediamine (HDA), 1-adamantylamine (AA), and 3,6,9-trioxaundecylamine (TA), along with a CO2-selective poly(ethylene glycol)/poly(propylene glycol) copolymer (Jeffamine2003) and polydimethylsiloxane (PDMS) units, we have synthesized membranes under ambient conditions with exceptional CO2 separation capabilities. The strategic inclusion of PDMS, up to a 20% composition within the PEG/PPG matrix, has resulted in copolymer membranes that not only surpass the 2008 upper limit for CO2/N2 separation but also meet the commercial targets for CO2/H2 separation. Comprehensive analysis reveals that these membranes adhere to the mixing rule and exhibit percolation behavior across the entire range of compositions (0-100%), maintaining robust antiplasticization performance even under pressures up to 20 atm. Our findings underscore the potential of ROMP in creating precisely engineered membranes for efficient CO2 separation, paving the way for their application in large-scale environmental and industrial processes.

19.
BMC Mol Cell Biol ; 25(1): 12, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649821

RESUMEN

Hormone receptor (HR)-positive breast cancer can become aggressive after developing hormone-treatment resistance. This study elucidated the role of long non-coding RNA (lncRNA) SOX2OT in tamoxifen-resistant (TAMR) breast cancer and its potential interplay with the tumor microenvironment (TME). TAMR breast cancer cell lines TAMR-V and TAMR-H were compared with the luminal type A cell line (MCF-7). LncRNA expression was assessed via next-generation sequencing, RNA extraction, lncRNA profiling, and quantitative RT-qPCR. SOX2OT overexpression effects on cell proliferation, migration, and invasion were evaluated using various assays. SOX2OT was consistently downregulated in TAMR cell lines and TAMR breast cancer tissue. Overexpression of SOX2OT in TAMR cells increased cell proliferation and cell invasion. However, SOX2OT overexpression did not significantly alter SOX2 levels, suggesting an independent interaction within TAMR cells. Kaplan-Meier plot analysis revealed an inverse relationship between SOX2OT expression and prognosis in luminal A and B breast cancers. Our findings highlight the potential role of SOX2OT in TAMR breast cancer progression. The downregulation of SOX2OT in TAMR breast cancer indicates its involvement in resistance mechanisms. Further studies should explore the intricate interactions between SOX2OT, SOX2, and TME in breast cancer subtypes.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Proliferación Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , Tamoxifeno , Femenino , Humanos , Antineoplásicos Hormonales/farmacología , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/genética , Resistencia a Antineoplásicos/genética , Células MCF-7 , Invasividad Neoplásica , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico , Microambiente Tumoral/genética
20.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38612554

RESUMEN

Root extracts of Ancistrocladus tectorius (AT), a shrub native to China, have been shown to have antiviral and antitumor activities, but the anti-obesity effects of AT aerial parts, mainly the leaves and stems, have not been investigated. This study is the first to investigate the anti-obesity effects and molecular mechanism of AT 70% ethanol extract in 3T3-L1 adipocytes and high-fat diet (HFD)-fed C57BL/6J mice. Treatment with AT extract inhibited lipid accumulation in 3T3-L1 cells and decreased the expression of adipogenesis-related genes. AT extract also upregulated the mRNA expression of genes related to mitochondrial dynamics in 3T3-L1 adipocytes. AT administration for 12 weeks reduced body weight and organ weights, including liver, pancreas, and white and brown adipose tissue, and improved plasma profiles such as glucose, insulin, homeostasis model assessment of insulin resistance, triglyceride (TG), and total cholesterol in HFD-fed mice. AT extract reduced HFD-induced hepatic steatosis with levels of liver TG and lipogenesis-related genes. AT extract upregulated thermogenesis-related genes such as Cidea, Pgc1α, Ucp1, Prdm16, Adrb1, and Adrb3 and mitochondrial dynamics-related genes such as Mff, Opa1, and Mfn2 in brown adipose tissue (BAT). Therefore, AT extract effectively reduced obesity by promoting thermogenesis and the mitochondrial dynamics of BAT in HFD-fed mice.


Asunto(s)
Caryophyllales , Dieta Alta en Grasa , Animales , Ratones , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Dinámicas Mitocondriales , Insulina , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA